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Executive Summary 

 
 
 
Our intent with this project was to design, build and test a motor driver for a three-phase 
brushless direct current (BLDC) motor. This driver was intended to be a standalone device with 
the only input being a 48V supply and the motor hall effect sensors. The driver was designed to 
control the motor speed, direction and braking operations with a dedicated display to indicate the 
real-time state of the motor. Our driver operates under four quadrant (4Q) motoring to achieve 
precise control, faster response time and position control of the rotor. Results from testing our 
motor drive have come up with an impressive 500 msec top speed to 0 rpm with no load and 500 
msec start under full load to top speed. The driver also protects against short circuit and prevents 
user error as best as possible. The motor drive is encapsulated in our uniquely designed case to 
separate the user from the circuitry. This case not only protects the user from coming in close 
contact with high voltages, but also provides a properly labeled, easy to use interface for motor 
control. The overall cost of the driver is $46.73, which allows it to be competitively priced with 
similar products in the market today. 
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Introduction 
Our group has built a solid state motor drive for a brushless DC (BLDC) motor because they are 
more efficient, last longer, and are more reliable than brushed motors. We chose to implement 
four quadrant (4Q) motoring in our drive design to achieve precise control, faster response time, 
and position control of the rotor. The driver has position, speed, and direction control along with 
a simple user interface and an overall low cost. 

Specifications 
The specifications for this project which we achieved are: 

1) Use the Anaheim Automation BLY 342S-48V-3200 Brushless DC (BLDC) Motor  
2) Use a 60V 15A DC power supply operating at 48V  
3) Phase current below 10A at all times and below motor rating during steady state  
4) Start under full load to top speed in 0.5 seconds  
5) Closed loop speed control over wide range of speeds 
6) Position control 
7) Regenerative braking from top speed to 0 with no load in 0.5 seconds  
8) Bidirectional operation of all functionality and reversible while in operation  
9) Control interface including:  

a) Master power switch  
b) Power on indicator light  
c) Current display  
d) Speed (rpm) display  
e) Speed control knob  
f) Brake control switch  
g) Reversing switch  
h) Position knob and enable switch 

10) Safe circuit, including short circuit protection 
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Circuit Design 
Our motor driver system consists of many sub-circuits that manage various parts of the driver. 
The overall driver system is shown in Figure 1 below. Although this exact design is not what was 
demonstrated in the lab, it has been tested and shown to work, but more time was needed to 
optimize the software to work with this design. 

 
Shown here are two individual ATMEGA328P microprocessor chips. Two microprocessors were 
necessary due to the added computation time needed for the RPM and current display. Thus, one 
of the processors is used entirely for writing to the display. 
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Inverter Bridge and MOSFET Driver 

The circuit schematic, shown in Figure 2, is the heart of our motor driver. This circuit controls 
the average terminal voltage applied to each phase of the BLDC motor and thus the direction of 
current flow through the motor. Control of the current flow is achieved by switching on and off 
the correct set of N-channel MOSFETs depending on the current position of the rotor.  
 
Reliable switching of both high and low-side MOSFETs is controlled by the HIP4086 
three-phase driver chip. This driver uses built-in bootstrap circuitry (along with external diodes 
and capacitors) to boost the high side output gate voltages to ~12V higher than the respective 
source voltages. This ensures full turn-on of the high-side MOSFETs of each phase. Referencing 
the source voltage for each high-side MOSFET required great attention to the voltage spikes seen 
by the xHS (high-side source) input pins of the HIP driver. These pins are very limited sensitive 
to over-voltage so a series pair of signal diodes and a snubber capacitor were used to clamp the 
voltage of these nodes. A small current limiting resistor (3.3Ω) was also installed in series with 
this pin for further protection. 
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Printed Circuit Board 
Using Autodesk EAGLE we created a schematic, 
shown in Figure 2, for the inverter bridge and 
MOSFET driver circuits with the appropriate 
component package sizes. Using this schematic we 
generated a compact, single-sided printed circuit 
board (PCB) layout with minimized trace lengths 
and wide traces for handling high current delivery 
(Figure 3). The board design was then compiled 
into a set of Gerber files that were then used by an 
LPKF ProtoMat S63 circuit board plotter to route 
the design into 1oz. FR4 copper board. 

 
The inspiration for building a PCB came after 
reading the HIP4086 driver documentation. Parts of 
the documentation focused heavily on proper PCB 
layout and there was a lot of discussion about 
reducing stray inductance and resistance in the 
driver chip peripherals. These MOSFET driver 
chips, like many others, seem to be quite prone to 
breaking when operated under slightly 
less-than-ideal conditions. We decided that 
replacing the breadboard with a circuit board would 
greatly reduce the voltage spiking seen by the driver 
chip, perhaps enough to eliminate motor stutter and 
to stop the destruction of driver chips. After much 
testing the board seemed to prove its worth as our 
rate of component destruction plummeted. Also, 

when replacing components on the PCB, soldering them to the correct locations is much easier 
and requires very little thought. This is not the case with a protoboard. 

4Q Operation PWM Generation and Control 

With the desire to run the motor in 4Q operation the ability to PWM all six MOSFETs and PWM 
four MOSFETs during each step was necessary. Our first choice for generating and controlling 
the PWM signals was to use an Arduino microcontroller and later a ATMEGA328P. This 
decision was made due to our familiarity with Arduino and its ease of use. As we progressed 
with the project we discovered the limitations of the Arduino.  
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One of the most critical tasks needed to be performed by the microcontroller is to generate PWM 
signals. At each step of the Brushless DC Motor operation two phases need to be PWM’ed with 
inverted PWM signals and other phase needs to in the Z state. When the two phases are being 
PWM’ed the same phase high side and low side mosfets can never be on at the same time. On 
the HIP4086 driver the low side inputs are inverted inside of the driver. At first glance each 
phase high side and low side pin can be tied together, but upon further examination the phase in 
Z state needs both high side and low side MOSFETs turned off. Thus, the high side and low side 
pins cannot be inverse of each other. Because of this, we need to be able to individually control 
all six input pins on the HIP4086. In addition, the other phase being PWM’ed needs to have the 
opposite PWM. This is due to not wanting both high side MOSFETs on or off at the same time. 
If they are the motor will stop due to voltage across the motor being 0V.  
 
To solve this, we tried several different methods. First was to imitate a PWM signal by changing 
the value of the digital general purpose input output (GPIO) pins at the desired frequency and at 
the same time. This method is called bit banging and allowed the flexibility to control which pins 
were high and low and at what time. This method requires precise timing. Unfortunately, as the 
program ran and the processor started to execute multiple tasks at once. Causing timing to be 
delayed and not achieving the desired results. 
 
Next, was to manipulate the PWM generated by the arduino timers directly. One way was to 
have one PWM signal be the inverse the other by having the duty cycle of the inverted PWM be 
1-dt. While the PWM duty ratio was correct, the signals were offset from each other. Our use 
required that when one PWM has a rising edge at the exact same time the inverted PWM must 
have a falling edge. With the previous method, this was not the case. To accomplish this, we had 
to dig into data sheet for the microcontroller of the Arduino. The solution was to adjust the 
register values that correspond to two pins with the same timer of the Arduino that we were 
using to PWM.  
 
The solution to the inverted PWM problem uncovered additional problems. On the Arduino Uno 
and MEGA 2560 there are three timers and six timers respectively. Each timer controls the PWM 
of the pins it is connected to. Sadly both Arduino types did not have a timer that was connected 
to 6 pins. When trying to use multiple timers the PWM was offset, as the rising edges were not 
aligned. 
 
Finally, our end solution was to use multiplexers and inverted PWM from changing the register. 
Using multiplexers allowed us to select one signal from any of the four being input into the 
multiplexer. With a multiplexer on each input of the HIP4086 we could send each multiplexer 
the same inverted and non inverted PWM signal. Along with a 5V high and 0V low for when the 
phase is in a Z state. This solved the timing issues by only needing to generate two PWM signals 
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on the same timer chip. The downside to this method that each multiplexer requires two selector 
pins. Therefore, for the whole system twelve GPIO pins were needed to control the selector pins 
and two pins needed for the PWM signals.  
 
In order to reduce costs, we decided to use an ATMEGA328P. This is the same microcontroller 
used in an Arduino Uno, but without all the unnecessary peripherals that the Uno has. 
Consequently, the ATMEGA328P microcontroller only has 13 digital GPIO pins and as 
discussed before, the project needs fourteen just to generate the PWM and control the 
multiplexers. As a result, we ended up using shift registers to take a serial input from the 
ATMEGA328P and output 8-bits in parallel. This reduced the number of GPIO pins used from 
14 down to 6.  
 
The circuit for controlling the inputs into the HIP4086 MOSFET gates can be seen on Figure 5 
and Figure 6. As shown the output PWM, inverted PWM, 0V and 5V are sent into the 
multiplexers. Then the shift registers are used to control the selector pins of the multiplexers. The 
shift registers are sent a serial input that when the SRCLK has a rising edge the value on the 
input is sent into a D flip-flop. The old values stored on the flip-flop are shifted into the 
neighboring flip-flop. The register can store up to eight bits of data. When the desired bits have 
been input into the register then a RCLK is sent a rising edge, resulting in the values stored in the 
flip-flops to be moved onto the output pins. Therefore, we can control which signal gets set into 
the HIP4086 and only use six pin on the ATMEGA328.
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Circuit Safety and Power Distribution 

Power from the power supply enters the motor driver system in the module shown in Figure 7 
below. The power is first sent through a 12A fuse. This is in place to protect the power supply 
from short circuits that occur in our system. The fuse is not expected to protected any 
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components because time for the fuse to blow is slow and the individual component current 
ratings can be lower than our max 10A being used by the motor windings. Short circuit cases can 
occur when the MOSFETs in the inverter bridge break and allow current to flow freely.  
 

 
Several of components in our system do not work at the input voltage of 48V. This has led to the 
need for converting the 48V input into several different voltages. As seen in the Figure 7, in 
addition to 48V there is also 12V and 5V supplied. To accomplish the conversion two buck 
converters, LM2576HVT-12 and LM2576HVT-5.0, were used. For the converters to work 
additional capacitors, inductor, and catch diode were needed. The parts selected for the buck 
converter circuit followed the recommendations of the LM2576HVT datasheet.  
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Hardware Selection 

HIP4086 Three-Phase MOSFET Driver 

The HIP4086 driver chip was chosen because of its level 
of available documentation online, relatively simple I/O 
structure and its easily adjustable “dead time” delay 
between switching high and low side MOSFETs of the 
same phase. The programmable dead time delay was a 
significant deciding factor when choosing this chip, as it 
removes some of the possibility of current shoot-through 
when switching between opposite pairs of MOSFETs. 
The HIP4086 also operates well within our specified parameters with a supply voltage of 12V, a 
maximum bootstrap supply of 95V and rise and fall times of 60ns and 40ns, respectively. These 
times correspond to gate capacitances of 1000pF, thus 
being acceptable for our MOSFETs given our switching 
frequency of 31kHz. 

LM2576HVT-12 and LM2576HVT-5 Buck 
Regulator 

In order to provide power to the ATMEGA328P, hall effect 
sensor, current sensor, LCD and HIP4086 driver, we used 
the LM2576HVT 5V and 12V buck regulators. These 
regulators were chosen due to their high input voltage of up 
to 65V and maximum supply current of 5.8A. These 
regulators also demonstrated very small ripple voltage 
given the load they are supplying, as well as being very 
efficient when compared to linear type regulators for the 
same application. These regulators did require some 
passive peripheral components in order to operate which 
increased the total cost, but was much more simple to 
implement than building them ourselves. 

15SQ100 Freewheeling Diode 

To manage the large back-EMF generated by the motor 
when switching between phases we used fast Schottky 
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diodes as freewheeling diodes across each MOSFET. These diodes in particular were rated 
appropriately for our driver with a peak reverse voltage of 100V and a continuous forward 
current rating of 15A. Most importantly these diodes have a maximum recovery time of 500ns 
which allows very little time for negative current spikes to persist. 

IRF530N N-Channel MOSFET 

Considering the large load that our motor drive supplies, we 
were very particular on our choice of switches. That is why 
we went with the IRF530N. These FETs have a voltage rating 
of 100V, a continuous current rating of 17A, a relatively low 
gate capacitance of 920pF (for faster switching times) and 
perhaps most importantly, an on resistance of 90mΩ. Given 
these specifications, they were not excessively expensive and 
were actually cheaper than many FETs with similar ratings. 
The low on resistance was a very desirable trait of this device 
because it meant very low losses even at higher switching 
speeds (such as 31kHz). The low gate capacitance was also 

appealing to us because it allowed the HIP4086 driver chip to perform to the best of its abilities.  

ATMEGA328P 

For the motor to run and be controlled, multiple tasks need 
to be performed. These include generating PWM signals, 
adjusting duty ratio, switching multiplexer selector inputs, 
measuring current, writing to a LCD, and switching to 
position control. In order to accomplish these tasks we 
used an ATMEGA328P 8-bit microcontroller. The 
ATMEGA328P was chosen due to its lower cost than 
using an Arduino Uno or MEGA 2560. An Arduino 
MEGA 2560 costs $45.95 because of all the added 
hardware and money going to support the Arduino 
platform. These costs were not necessary for mass 
production because there is no need for the controller to be 
reprogram and there already is a 5V voltage regulator in 

our design. By using an ATMEGA328P we reduced the cost down to $1.15. Also, the 
ATMEGA328P was easier to integrate into our circuit because it can be placed directly onto a 
breadboard or PCB. Additionally, we could use the same code and IDE that an Arduino uses. 
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74LS153 Dual 4:1 Multiplexer 

In order to send the proper set of six simultaneous signals to the 
HIP4086 driver chip we needed a means of controlling which 
inputs received what. Although the Arduino was capable of sending 
six individual PWM signals at the same frequency, not all of these 
signals were referencing the same timer signal. This resulted in the 
PWM signals being out-of-phase from each other and ultimately 
unusable. To solve this problem we used six 4-to-1 multiplexers 
each with the same inputs of PWM, , 5V, and 0V. Each ofP W M  
these multiplexers also received two binary inputs from the Arduino to select which input signal 
the respective multiplexer would output. This allowed for much more control over which signals 
the driver chip received and ensured that the signals were consistent. 

SN74HC595N 8 Bit Shift Register 

A consequence of using six 74LS153 multiplexers is that each 
multiplexer uses two selector pins. Thus, twelve GPIO pins on our 
microcontroller are needed to control the multiplexers. Unfortunately, 
the ATMEGA328P microcontroller only has 13 GPIO pins and other 
parts of the project also needed GPIO pins. To reduce the number of 
pins needed to control the multiplexers two SN74HC595N shift 
registers were used. A shift register takes in a serial input on every 
rising edge of the SRCLK from the ATMEGA328P and outputs all 
eight bits in parallel on the rising edge of RCLK. The parallel output 
is used to control the multiplexers. This reduced the total amount of 
GPIO pins down from twelve to four.  
 

Short Circuit Protection Fuse 

In the case of a short circuit, a 12A slow blow fuse followed 
the 48V power supply. This prevents damage to the power 
supply if power and ground accidentally get connected. The 
12A rating on the fuse will work because there will be a very 
large amount of current running through it in the case of a 
short circuit. The fuse, however, will not protect the circuitry 
in case of currents over 10A, since even a fast acting fuse 
would not blow quick enough to protect from transients. 
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Circuit Containment Vessel 

We produced a box to help create a safer, easier to use product. We laser-cut the box out of ⅛” 
birch wood. The front of the box has all the controls and displays that the user of this product 
will need. This makes our driver easy to figure out as well as looking professional and clean. The 
sides and back of the box have large ventilation slots cut out to allow for ample airflow and 
cooling of the MOSFETs. 
 
 
 
 
 
 
 
 
 
 

Common Mode Filter 

In series with each phase output going into the motor is a 
winding around a common inductor core. We used a powder 
inductor core wound with three sets of 20 turns of 16 gauge 
magnet wire. This provides each phase with an inductance 
of about 77μH (From Professor Christie). The purpose of 
the common mode choke is to reduce the amount of noise 
seen by the output of each driver phase, generated by the 

motor while imposing very little impedance on the normal current flow. 
 

LCM-S01602DSR/A LCD Display 

For our speed and current display, we used the 
LCM-S01602DSR/A LCD display. This display was chosen 
because of the level of available documentation online, as well 
as its ability to easily work with one of the built-in Arduino 
libraries (LiquidCrystal.h). This display also has a bright 
backlight and adjustable contrast for enhanced readability under 
various lighting conditions. 
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CQ-209A Current Sensor 

We placed a CQ-209A current sensor so that it samples the current going directly into the 
H-bridge from the 48V rail. This location was chosen so we would ensure that the current 
reading displays the current flowing into the phases, and not the current used for the voltage 
regulators, microcontrollers, and the rest of the circuit. The current sensor samples the current 
flowing through the pins using a Hall sensor, and outputs a voltage which is proportional to 
current value. Figure 19 shows the relationship. 

 
Figure 19: Output voltage vs current input (from CQ209A datasheet) 

 
The sensitivity of the sensor, 66mV/A, is found in the datasheet and gives the slope of the above 
graph. Equation 1 shows the input current with respect to output voltage:

       (1) 
The processor reads a voltage from 0V to 5V as an integer value from 0 to 1023, so we converted 
the analog input to the voltage measurement using equation 2: 

         (2)  
Combining equations 1 and 2, we got the equation to calculate and display the current going into 
the phases: 

       (3) 
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However, when this was implemented with the circuit, the current readings on the display were 
lower than the ammeter readings at higher values. To find the relationship between the actual 
current and what our equation was producing, we plotted several points of each. The closest 
relationship we found was: 

        (4) 
This is the final equation we used to output the correct current onto the display based on a best fit 
line from measured data points over a range of current levels. 

  

4Q Operation 

Commutation 

We used the following commutation table to program which MOSFETS need to receive the 
PWM signal, which MOSFETS need to receive the inverted PWM signal, and which MOSFETS 
need to be off in each of the six steps. 
 

Table 1: Commutation Table 
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Speed Control Knob 

The speed control knob lets the user adjust the speed of the rotor from 0 rpm to 3200 rpm. This is 
achieved by mapping the output of a potentiometer from 0-5V to a speed range of 0-3200rpm. 
The analog to digital converter (ADC) of the Arduino has a resolution of 10bits, so our speed 
setting has a theoretical resolution of ~3rpm. This is good enough for our purposes. 
 

Closed Loop Speed Control 

To eliminate the possibility of incorrectly coding a control algorithm, we opted for downloading 
a PID controller library built for Arduino. This robust library was developed by Brett 
Beauregard. In practice the reference rpm from the speed control knob is compared to the actual 
rpm calculated from the Hall effect sensors. This error is computed by the PI controller and the 
algorithm automatically adjusts the duty ratio accordingly (if the actual rpm is lower than the 
reference, the duty ratio is set higher and vice versa). The Kp and Ki constants were adjusted to 
achieve low rise time and overshoot and fast settling time. 
 

Regenerative Braking 

To achieve regenerative braking, a diode is placed in series with the power supply input to 
prevent current from flowing into the non-regenerative power supply. A large parallel capacitor 
is used to store the energy released from braking. A switch is used to change the duty ratio of the 
MOSFETs from the running duty ratio to 50% over a short period of time. This allows for 
smooth braking without causing too much voltage rise on the regenerative capacitance. 
 

Bidirectional Operation 

At 50% duty ratio, the average terminal voltage is 0 volts and the rotor is at a standstill. At a duty 
ratio higher than 50% the average terminal voltage is positive and so the rotor rotates in the 
positive direction. At a duty ratio lower than 50% the average terminal voltage is negative and so 
the rotor rotates in the negative direction. The reversing switch changes the direction of rotor 
rotation by sampling the current duty ratio and mirroring it across the 50% point. (If the current 
duty ratio is 100%, the reversing switch makes it 0%, if the current duty ratio is 25%, the 
reversing switch makes it 75%, and so on). The change in duty ratio is applied over a period of 
time to allow for a more smooth transition from one direction to the other without a massive 
spike in current. 
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Speed Display 

The speed is calculated by counting the number of step changes the rotor makes in a half second, 
which is sensed by the Hall Effect Sensor. Each revolution has 24 steps, so to convert the speed 
to RPM, we take the number of step changes per half second, divide by 24 to get revolutions per 
second, and multiply by 120 to get revolutions per minute. 
 

P M  (StepCount / 24) 20 R =  * 1                                                                                (5) 
 

Position Control 

For added safety, we added a switch to enable and disable position control. This allows the user 
to choose between operating the motor under high speed with speed control, or under zero speed 
with position control. When the position control switch is enabled, a position knob references to 
a specific location on the rotor. One revolution on the rotor has 24 steps that can be sensed by the 
Hall effect sensors, so the position knob can reference between 24 locations on the rotor, from 0 
to 345 degrees, in 15 degree increments. 

Standards 

IEC 60287) - Calculation of permissible current in cables at steady state rating 

This standard describes the maximum current that a conductor of given dimensions can safely 
carry. We paid attention to this standard when designing the high current carrying traces of the 
inverter bridge PCB, as well as when we chose the magnet wire gauge for the common mode 
filter. 
 

1-1986) - IEEE Standard General Principles for Temperature Limits in the 
Rating of Electric Equipment and for the Evaluation of Electrical Insulation 

Our design followed these standards by ensuring that the parts of our circuit with the highest 
power dissipation received ample airflow, and the conductors used for high current applications 
were sized appropriately to minimize resistive losses and used insulation with a temperature 
rating higher than what is expected under normal operation. 
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315-1975) - IEEE Standard for Graphic Symbols for Electrical and 
Electronics Diagrams 

This IEEE standard relates to how circuit diagrams and schematics are drawn. It gives guidance 
on the standards to follow when creating a diagram such that another party may be able to easily 
interpret the circuit diagram themselves. 
 

UL-1741) - Standard for Inverters, Converters and Controllers for Use In 
Independent Power Systems  

This standard covers information about constructing inverters and converters that are not 
connected to any grid. Therefore, our circuit applies to this standard. The standard covers how to 
properly choose your components based on the worst case current and voltage that would be 
applied to it. We followed this while choosing out MOSFETs and diodes [1]. 

IEEE Policies Section 7.8) - IEEE Code of Ethics 

Throughout the project, we have followed the ethics policies set by IEEE. First, we have been 
forthright with our design and its capabilities. Next, our members have improved their 
understanding of the concepts used in the project, its uses, and its possible consequences. Also, 
members have sought out help when it came to our design, took into consideration the criticism 
other have given, and corrected mistakes.  Likewise, we have helped and supported our fellow 
colleagues in their work. Lastly, all persons that helped or interacted with our group were never 
discriminated against.  

Bill of Materials 
 
Below is the bill of materials for our driver circuit. We based the unit prices on 1000 or more 
units being produced. This is more realistic for actual manufacturing costs rather than the more 
expensive prototypes. Our motor driver circuits will costs approximately $46.73 for each unit. 
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Table 2: Bill of Materials (prices from www.digikey.com) 

 
 

Business Plan 
Our company, Loomis Drives, has designed a motor drive that operates under four quadrant (4Q) 
motoring to achieve precise control, fast response time, and position control of the rotor, proving 
to be more capable than a motor drive with two quadrant (2Q) motoring. 
 
Our motor drive is intended for use with a three-phase brushless direct current (BLDC) motor. It 
has been built as a standalone device with the inputs consisting of a 48V supply and the motor 
hall effect sensors and is rated for 10 amps. Our motor drive is capable of speed control, 
direction control, position control, and also has regenerative braking, all while showing the 
real-time state of the motor on a dedicated display.  
 
The motor drive is encapsulated in our uniquely designed case to separate the user from the 
circuitry. The case not only protects the user from coming in close contact with high voltages, 
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but it also protects the drive from being damaged due to user negligence. The case is designed 
with large holes on the sides to allow for proper ventilation and all the user input knobs and 
switches are properly labeled to make for an easy to use interface.  
 
In order to minimize our risk factors and maximize our profits, our company is implementing 
several precautionary measures. First of all, we plan on obtaining sufficient capital before 
starting production (at least one million dollars to cover first quarter costs). We will also research 
the customer base and their needs and then produce different drive variations to best suit 
customer needs. Finally, by buying and assembling our motor drives in China, we will be able to 
undercut competitor prices.  
 
Our main market is the industrial robots industry. As seen in Figure 20, 2017 is expected to see a 
sale of approximately 330,000 industrial robots with an annual 15% increase. A typical robotic 
arm requires about five drives, which provides a potential market for 1.65 million drives. 
Capturing just 5% of this market space will provide us with a demand of 82,500 drives in our 
first year. Our drives cost $46.73 (cost break down in Table 2) to produce, so at a sale cost of 
$200 per drive, we expect annual profits of 12.6 million dollars with a minimum 15% annual 
growth. In concurrent years, we plan to add to our customer base by pursuing the 3D printing 
market, as well as other robotic markets. 
 

 

Figure 20: Industrial robot sales from 2014 to 2015 and forecasted 2016 to 2017 sales. The year to year 
trend suggests a 15% annual increase [2].   
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Advice 

Some advice for future students building a drive for a BLDC motor: 
● The common mode filter is useful for making the motor run more smoothly 
● Adding snubbers helps to eliminate a lot of the voltage spikes that tend to harm chips 
● Using shorter wires/circuit boards cuts down on stray inductance  
● Order more parts than you think you might need, and order them well ahead of time 
● Try to organize purchasing common parts with other groups to get bulk discounts and 

spread the cost of shipping between groups. 
● Making a PCB will make your circuit more robust/likely to work every time you test it 
● Familiarize students with the makerspace and other resources available on campus.  
● Test all previous functionality of the driver after every software update 
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Appendix 
Arduino Motoring Code: 
#include <PID_v1.h> 
 
//Setup PID 
double Setpoint, Input, Output; 
double Kp = 0.02; 
double Ki = 0.05; 
double Kd = 0.0; 
PID motorPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT); 
double pidDuty = 0; 
 
//Misc vars 
long count = 0; 
long prevCount = 0; 
long pos = 0; 
long prevPos = 0; 
int dStep = 0; 
long dPos = 0; 
float RPM = 0; 
long prevTime = 0; 
int prevRev = 0; 
long stepCount = 0; 
int counter = 0; 
int loops = 250; 
 
//Reverse Var 
int revPin = 7; 
boolean reverse = false; 
boolean prevReverse = false; 
int rDist = 0; 
 
//BRAKING 
int brakePin = 8; 
boolean braking = false; 
boolean prevBraking = false; 
int releaseBrakes = 0; 
 
//Position Control vars 
int currentPos = 0; 
int oldPos = 0; 
int posSwitch = 6; 
int posPin = A2; 
boolean posControlEnabled = false; 
long deltaX = 0; 
long count4 = 0; 
 
//Duty ratio var 
int duty = 0; 
 
// PREP FOR FAST ANALOGREAD 
#ifndef cbi 
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) 
#endif 
#ifndef sbi 
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) 
#endif 
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// MUX BIT OUTPUTS 
int mux1A = 49; //PL0 
int mux1B = 48; //PL1 
int mux2A = 47; //PL2 
int mux2B = 46; //PL3 
int mux3A = 45; //PL4 
int mux3B = 44; //PL5 
int mux4A = 43; //PL6 
int mux4B = 42; //PL7 
int mux5A = 22; //PA0 
int mux5B = 23; //PA1 
int mux6A = 24; //PA2 
int mux6B = 25; //PA3 
 
// HALL SENSOR INPUTS 
int HallA = 50; 
int HallB = 51; 
int HallC = 52; 
 
// HALL EFFECT READING VARS 
char my_varA = 0; 
char my_varB = 0; 
char my_varC = 0; 
int A; 
int B; 
int C; 
 
// MOTOR STEP LOCATION 
long curStep = 0; 
long prevStep = 0; 
long prevStep2 = 0; 
 
 
void setup() { 
  //Initialize Hall effect input pins 
  pinMode(HallA, INPUT); 
  pinMode(HallB, INPUT); 
  pinMode(HallC, INPUT); 
 
  //SETUP HALL INTERRUPTS 
  attachInterrupt(digitalPinToInterrupt(HallA), runMotor, CHANGE); 
  attachInterrupt(digitalPinToInterrupt(HallB), runMotor, CHANGE); 
  attachInterrupt(digitalPinToInterrupt(HallC), runMotor, CHANGE); 
 
  //Initialize mux outputs 
  DDRL = 0b11111111; //outputs 
  DDRA = 0b11111111; //outputs 
 
  // SET PWM FREQ (31kHz) 
  TCCR2B = TCCR2B & 0b11111000 | 0x01; 
 
  // SET INVERSE PWM 
  TCCR2A = TCCR2A | 0x30; 
 
  // INCREASE analogRead() SPEED 
  sbi(ADCSRA, ADPS2) ; 
  cbi(ADCSRA, ADPS1) ; 
  cbi(ADCSRA, ADPS0) ; 
  //Initialize pot input 
  pinMode(A1, INPUT); 
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  //SET INITIAL PWM DUTY RATIO 
  duty = 128; //50% 
  analogWrite(10, duty); 
  analogWrite(9, duty); 
 
  //Detect the initial rotor step location 
  A = digitalRead(HallA); 
  B = digitalRead(HallB); 
  C = digitalRead(HallC); 
  if (A == 1 && B == 0 && C == 0) { 
    curStep = 1; 
  } else if (A == 1 && B == 1 && C == 0) { 
    curStep = 2; 
  } else if (A == 0 && B == 1 && C == 0) { 
    curStep = 3; 
  } else if (A == 0 && B == 1 && C == 1) { 
    curStep = 4; 
  } else if (A == 0 && B == 0 && C == 1) { 
    curStep = 5; 
  } else { 
    curStep = 6; 
  } 
 
  pinMode(11, OUTPUT); 
  pinMode(posSwitch, INPUT); 
  pinMode(posPin, INPUT); 
  prevStep = curStep; 
  prevStep2 = curStep; 
 
  //Initialize all MOSFETs LOW! 
  turnOff(); 
 
  //Initialize PID function 
  Input = RPM; 
  Setpoint = (double) map(analogRead(A1), 0, 1024, 0, 3000); 
  motorPID.SetMode(AUTOMATIC); 
  motorPID.SetOutputLimits(128, 250); 
  motorPID.SetSampleTime(50); 
} 
 
void loop() { 
  //Output to MUX's 
  if (!posControlEnabled) { 
    runMotor(); 
    getRpm(); 
    Input = RPM; 
    Setpoint = (double) map(analogRead(A1), 0, 1024, 0, 3000); 
    motorPID.Compute(); 
    managePWM(); 
 
    // Run once per ### loops 
    if (count - prevCount >= loops) { 
      //Check direction/braking and set the PWM duty ratio accordingly 
      prevCount = count; 
    } 
    count++; 
  } 
 
  updateRotorPosition(); 
  //Position control 
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  int enab = (int)(PINH & (1 << PH3)); 
  if (enab != 0) { 
    enab = 1; 
  } 
  if (RPM == 0 && Setpoint == 0 && enab == 1) { 
    posControlEnabled = true; 
    currentPos = map(analogRead(posPin), 0, 1024, 0, 23); 
 
    if (count4 >= 1000) { 
      if (currentPos != oldPos) { 
        deltaX = currentPos - oldPos; 
        oldPos = currentPos; 
      } 
      count4 = 0; 
    } 
    count4++; 
 
    if (pos < 0) { 
      pos = pos + 24; 
    } 
 
    while (deltaX > 0) { 
      duty = 132; 
      updateRotorPosition(); 
      if (curStep != prevStep) { 
        deltaX--; 
      } 
      //UPDATE PWM DUTY RATIO 
      analogWrite(10, duty); 
      analogWrite(9, duty); 
      runMotor(); 
    } 
    duty = 128; 
    while (deltaX < 0) { 
      duty = 123; 
      updateRotorPosition(); 
      if (curStep != prevStep) { 
        deltaX++; 
      } 
      //UPDATE PWM DUTY RATIO 
      analogWrite(10, duty); 
      analogWrite(9, duty); 
      runMotor(); 
    } 
    duty = 128; 
 
    //UPDATE PWM DUTY RATIO 
    analogWrite(10, duty); 
    analogWrite(9, duty); 
    if (digitalRead(posSwitch) == LOW) { 
      posControlEnabled = false; 
    } 
  } 
 
} 
 
 
void updateRotorPosition() { 
  //GET THE ROTOR POSITION 
  if (pos == 0 && prevPos != 0) { 
    dPos++; 
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  } 
  prevPos = pos; 
  if (prevStep != curStep) { 
    dStep = curStep - prevStep; 
    if (dStep == 1 || dStep == -5) { 
      //FWD 
      pos++; 
    } else { 
      //BWD 
      pos--; 
    } 
    if (pos == 24 || pos == -24) { 
      pos = 0; 
    } 
    prevStep = curStep; 
  } 
} 
 
void runMotor() { 
  // READ & GET THE HALL SENSOR STATES 
  my_varA = (PINB & (1 << PB3)); 
  my_varB = (PINB & (1 << PB2)); 
  my_varC = (PINB & (1 << PB1)); 
  A = (int)my_varA; 
  B = (int)my_varB; 
  C = (int)my_varC; 
  if (A != 0) { 
    A = 1; 
  } 
  if (B != 0) { 
    B = 1; 
  } 
  if (C != 0) { 
    C = 1; 
  } 
 
  // SET MUX STATES BASED ON STEP LOCATION 
  // AND MAKE THE MOTOR TURN! 
  if (A == 1 && B == 0 && C == 0) { 
    PORTL = 0b11100101; 
    PORTA = 0b00000000; 
    curStep = 1; 
  } else if (A == 1 && B == 1 && C == 0) { 
    PORTL = 0b01011110; 
    PORTA = 0b00000000; 
    curStep = 2; 
  } else if (A == 0 && B == 1 && C == 0) { 
    PORTL = 0b01010000; 
    PORTA = 0b00001110; 
    curStep = 3; 
  } else if (A == 0 && B == 1 && C == 1) { 
    PORTL = 0b11100000; 
    PORTA = 0b00000101; 
    curStep = 4; 
  } else if (A == 0 && B == 0 && C == 1) { 
    PORTL = 0b00001110; 
    PORTA = 0b00000101; 
    curStep = 5; 
  } else { 
    PORTL = 0b00000101; 
    PORTA = 0b00001110; 
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    curStep = 6; 
  } 
} 
 
void turnOff() { 
  PORTL = 0b11101110; 
  PORTA = 0b00001110; 
} 
 
void managePWM() { 
  // Adjust duty normally if not changing direction/braking 
  if (rDist == 0 && !braking && releaseBrakes == 0) { 
    if (reverse) { 
      duty = 250 - (int)Output; 
      //duty = map(analogRead(A1), 0, 1024, 128, 10); 
    } else { 
      duty = (int)Output; 
      //duty = map(analogRead(A1), 0, 1024, 128, 215); 
    } 
  } 
 
  //READ REVERSE PIN 
  reverse = digitalRead(revPin); 
  if (reverse != prevReverse) { 
    reverseMotor(); 
    prevReverse = reverse; 
  } 
 
  //READ BRAKING PIN 
  braking = digitalRead(brakePin); 
  if (braking != prevBraking) { 
    brakeMotor(); 
    prevBraking = braking; 
  } 
 
  //If braking switch is turned off go back to 
  //normal duty over a period of time 
  if (releaseBrakes > 0 && !braking) { 
    if (reverse) { 
      duty--; 
      releaseBrakes--; 
    } else { 
      duty++; 
      releaseBrakes--; 
    } 
  } 
 
  //Adjust duty ratio to new value over a period of time 
  if (rDist > 0) { 
    if (reverse) { 
      if (braking) { 
        duty++; 
        rDist--; 
      } else { 
        duty--; 
        rDist--; 
      } 
    } else { 
      if (braking) { 
        duty--; 
        rDist--; 
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      } else { 
        duty++; 
        rDist--; 
      } 
    } 
  } 
  //UPDATE PWM DUTY RATIO 
  analogWrite(10, duty); 
  analogWrite(9, duty); 
} 
 
void reverseMotor() { 
  //Reverse switch has been flipped 
  if (reverse) { 
    //prev state was forward 
    rDist = (2 * (duty - 128)); 
  } else { 
    //prev state was reverse 
    rDist = (2 * (128 - duty)); 
  } 
} 
 
void brakeMotor() { 
  //Brake switch has been flipped 
  if (braking) { 
    if (!reverse) { 
      rDist = duty - 128; 
    } else { 
      rDist = 128 - duty; 
    } 
    releaseBrakes = rDist; 
  } 
} 
 
void getRpm() { 
  // CALCULATE RPM 
  if (curStep != prevStep) { 
    stepCount++; 
  } 
  prevStep = curStep; 
  if (millis() - prevTime >= 250) { 
    RPM = (stepCount / 24.0) * 240.0; 
    stepCount = 0.0; 
    prevTime = millis(); 
  } 
} 
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