

EE 453 - Electric Drives
Brushless DC Motor Driver: a Capstone Project

Carissa Flugstad

Kyle Hess
Ryan Mills

Vladislav Sipko

March 9th 2017

Professor:
Rich Christie

Executive Summary

Our intent with this project was to design, build and test a motor driver for a three-phase
brushless direct current (BLDC) motor. This driver was intended to be a standalone device with
the only input being a 48V supply and the motor hall effect sensors. The driver was designed to
control the motor speed, direction and braking operations with a dedicated display to indicate the
real-time state of the motor. Our driver operates under four quadrant (4Q) motoring to achieve
precise control, faster response time and position control of the rotor. Results from testing our
motor drive have come up with an impressive 500 msec top speed to 0 rpm with no load and 500
msec start under full load to top speed. The driver also protects against short circuit and prevents
user error as best as possible. The motor drive is encapsulated in our uniquely designed case to
separate the user from the circuitry. This case not only protects the user from coming in close
contact with high voltages, but also provides a properly labeled, easy to use interface for motor
control. The overall cost of the driver is $46.73, which allows it to be competitively priced with
similar products in the market today.

Carissa Flugstad

Kyle Hess
Ryan Mills

Vladislav Sipko

1

Table of Contents

Executive Summary 1

Table of Contents 2

List of Figures 4

List of Tables 4

Introduction 5

Specifications 5

Circuit Design 6
Inverter Bridge and MOSFET Driver 7
4Q Operation PWM Generation and Control 8
Circuit Safety and Power Distribution 11

Hardware Selection 13
HIP4086 Three-Phase MOSFET Driver 13
LM2576HVT-12 and LM2576HVT-5 Buck Regulator 13
15SQ100 Freewheeling Diode 13
IRF530N N-Channel MOSFET 14
ATMEGA328P 14
74LS153 Dual 4:1 Multiplexer 15
SN74HC595N 8 Bit Shift Register 15
Short Circuit Protection Fuse 15
Circuit Containment Vessel 16
Common Mode Filter 16
LCM-S01602DSR/A LCD Display 16
CQ-209A Current Sensor 17

4Q Operation 18
Commutation 18
Speed Control Knob 19
Closed Loop Speed Control 19
Regenerative Braking 19
Bidirectional Operation 19
Speed Display 20
Position Control 20

Standards 20

2

IEC 60287) - Calculation of permissible current in cables at steady state rating 20
1-1986) - IEEE Standard General Principles for Temperature Limits in the Rating of Electric
Equipment and for the Evaluation of Electrical Insulation 20
315-1975) - IEEE Standard for Graphic Symbols for Electrical and Electronics Diagrams 21
UL-1741) - Standard for Inverters, Converters and Controllers for Use In Independent Power
Systems 21
IEEE Policies Section 7.8) - IEEE Code of Ethics 21

Bill of Materials 21

Business Plan 22

Advice 24

References 25

Appendix 26

3

List of Figures

Figure 1: Block diagram of motor drive circuit 6
Figure 2: Circuit diagram of inverter bridge and MOSFET driver 7
Figure 3: Printed circuit board design 8
Figure 4: Completed PCB with components 8
Figure 5: Block diagram of microcontroller and supporting hardware 11
Figure 6: Microcontroller, shift register, and multiplexer circuit set-up 11
Figure 7: Power distribution circuit 12
Figure 8: HIP4086 Three-Phase MOSFET Driver 13
Figure 9: LM2576HVT-12 and LM2576HVT-5 Buck Regulator 13
Figure 10: 15SQ100 Freewheeling Diode 13
Figure 11: IRF530N N-Channel MOSFET 14
Figure 12: ATMEGA328P chip 14
Figure 13: 74LS153 Dual 4:1 Multiplexer 15
Figure 14: Shift Register chip 15
Figure 15: 12A slow blow fuse 15
Figure 16: Circuit Containment Vessel 16
Figure 17: Common Mode Filter 16
Figure 18: LCM-S01602DSR/A LCD Display 16
Figure 19: Output voltage vs current input for CQ-209A Current Sensor 17
Figure 20: Industrial robots sales trend 23

List of Tables
Table 1: Commutation Table 18
Table 2: Bill of Materials 22

4

Introduction
Our group has built a solid state motor drive for a brushless DC (BLDC) motor because they are
more efficient, last longer, and are more reliable than brushed motors. We chose to implement
four quadrant (4Q) motoring in our drive design to achieve precise control, faster response time,
and position control of the rotor. The driver has position, speed, and direction control along with
a simple user interface and an overall low cost.

Specifications
The specifications for this project which we achieved are:

1) Use the Anaheim Automation BLY 342S-48V-3200 Brushless DC (BLDC) Motor
2) Use a 60V 15A DC power supply operating at 48V
3) Phase current below 10A at all times and below motor rating during steady state
4) Start under full load to top speed in 0.5 seconds
5) Closed loop speed control over wide range of speeds
6) Position control
7) Regenerative braking from top speed to 0 with no load in 0.5 seconds
8) Bidirectional operation of all functionality and reversible while in operation
9) Control interface including:

a) Master power switch
b) Power on indicator light
c) Current display
d) Speed (rpm) display
e) Speed control knob
f) Brake control switch
g) Reversing switch
h) Position knob and enable switch

10) Safe circuit, including short circuit protection

5

Circuit Design
Our motor driver system consists of many sub-circuits that manage various parts of the driver.
The overall driver system is shown in Figure 1 below. Although this exact design is not what was
demonstrated in the lab, it has been tested and shown to work, but more time was needed to
optimize the software to work with this design.

Shown here are two individual ATMEGA328P microprocessor chips. Two microprocessors were
necessary due to the added computation time needed for the RPM and current display. Thus, one
of the processors is used entirely for writing to the display.

6

Inverter Bridge and MOSFET Driver

The circuit schematic, shown in Figure 2, is the heart of our motor driver. This circuit controls
the average terminal voltage applied to each phase of the BLDC motor and thus the direction of
current flow through the motor. Control of the current flow is achieved by switching on and off
the correct set of N-channel MOSFETs depending on the current position of the rotor.

Reliable switching of both high and low-side MOSFETs is controlled by the HIP4086
three-phase driver chip. This driver uses built-in bootstrap circuitry (along with external diodes
and capacitors) to boost the high side output gate voltages to ~12V higher than the respective
source voltages. This ensures full turn-on of the high-side MOSFETs of each phase. Referencing
the source voltage for each high-side MOSFET required great attention to the voltage spikes seen
by the xHS (high-side source) input pins of the HIP driver. These pins are very limited sensitive
to over-voltage so a series pair of signal diodes and a snubber capacitor were used to clamp the
voltage of these nodes. A small current limiting resistor (3.3Ω) was also installed in series with
this pin for further protection.

7

Printed Circuit Board
Using Autodesk EAGLE we created a schematic,
shown in Figure 2, for the inverter bridge and
MOSFET driver circuits with the appropriate
component package sizes. Using this schematic we
generated a compact, single-sided printed circuit
board (PCB) layout with minimized trace lengths
and wide traces for handling high current delivery
(Figure 3). The board design was then compiled
into a set of Gerber files that were then used by an
LPKF ProtoMat S63 circuit board plotter to route
the design into 1oz. FR4 copper board.

The inspiration for building a PCB came after
reading the HIP4086 driver documentation. Parts of
the documentation focused heavily on proper PCB
layout and there was a lot of discussion about
reducing stray inductance and resistance in the
driver chip peripherals. These MOSFET driver
chips, like many others, seem to be quite prone to
breaking when operated under slightly
less-than-ideal conditions. We decided that
replacing the breadboard with a circuit board would
greatly reduce the voltage spiking seen by the driver
chip, perhaps enough to eliminate motor stutter and
to stop the destruction of driver chips. After much
testing the board seemed to prove its worth as our
rate of component destruction plummeted. Also,

when replacing components on the PCB, soldering them to the correct locations is much easier
and requires very little thought. This is not the case with a protoboard.

4Q Operation PWM Generation and Control

With the desire to run the motor in 4Q operation the ability to PWM all six MOSFETs and PWM
four MOSFETs during each step was necessary. Our first choice for generating and controlling
the PWM signals was to use an Arduino microcontroller and later a ATMEGA328P. This
decision was made due to our familiarity with Arduino and its ease of use. As we progressed
with the project we discovered the limitations of the Arduino.

8

One of the most critical tasks needed to be performed by the microcontroller is to generate PWM
signals. At each step of the Brushless DC Motor operation two phases need to be PWM’ed with
inverted PWM signals and other phase needs to in the Z state. When the two phases are being
PWM’ed the same phase high side and low side mosfets can never be on at the same time. On
the HIP4086 driver the low side inputs are inverted inside of the driver. At first glance each
phase high side and low side pin can be tied together, but upon further examination the phase in
Z state needs both high side and low side MOSFETs turned off. Thus, the high side and low side
pins cannot be inverse of each other. Because of this, we need to be able to individually control
all six input pins on the HIP4086. In addition, the other phase being PWM’ed needs to have the
opposite PWM. This is due to not wanting both high side MOSFETs on or off at the same time.
If they are the motor will stop due to voltage across the motor being 0V.

To solve this, we tried several different methods. First was to imitate a PWM signal by changing
the value of the digital general purpose input output (GPIO) pins at the desired frequency and at
the same time. This method is called bit banging and allowed the flexibility to control which pins
were high and low and at what time. This method requires precise timing. Unfortunately, as the
program ran and the processor started to execute multiple tasks at once. Causing timing to be
delayed and not achieving the desired results.

Next, was to manipulate the PWM generated by the arduino timers directly. One way was to
have one PWM signal be the inverse the other by having the duty cycle of the inverted PWM be
1-dt. While the PWM duty ratio was correct, the signals were offset from each other. Our use
required that when one PWM has a rising edge at the exact same time the inverted PWM must
have a falling edge. With the previous method, this was not the case. To accomplish this, we had
to dig into data sheet for the microcontroller of the Arduino. The solution was to adjust the
register values that correspond to two pins with the same timer of the Arduino that we were
using to PWM.

The solution to the inverted PWM problem uncovered additional problems. On the Arduino Uno
and MEGA 2560 there are three timers and six timers respectively. Each timer controls the PWM
of the pins it is connected to. Sadly both Arduino types did not have a timer that was connected
to 6 pins. When trying to use multiple timers the PWM was offset, as the rising edges were not
aligned.

Finally, our end solution was to use multiplexers and inverted PWM from changing the register.
Using multiplexers allowed us to select one signal from any of the four being input into the
multiplexer. With a multiplexer on each input of the HIP4086 we could send each multiplexer
the same inverted and non inverted PWM signal. Along with a 5V high and 0V low for when the
phase is in a Z state. This solved the timing issues by only needing to generate two PWM signals

9

on the same timer chip. The downside to this method that each multiplexer requires two selector
pins. Therefore, for the whole system twelve GPIO pins were needed to control the selector pins
and two pins needed for the PWM signals.

In order to reduce costs, we decided to use an ATMEGA328P. This is the same microcontroller
used in an Arduino Uno, but without all the unnecessary peripherals that the Uno has.
Consequently, the ATMEGA328P microcontroller only has 13 digital GPIO pins and as
discussed before, the project needs fourteen just to generate the PWM and control the
multiplexers. As a result, we ended up using shift registers to take a serial input from the
ATMEGA328P and output 8-bits in parallel. This reduced the number of GPIO pins used from
14 down to 6.

The circuit for controlling the inputs into the HIP4086 MOSFET gates can be seen on Figure 5
and Figure 6. As shown the output PWM, inverted PWM, 0V and 5V are sent into the
multiplexers. Then the shift registers are used to control the selector pins of the multiplexers. The
shift registers are sent a serial input that when the SRCLK has a rising edge the value on the
input is sent into a D flip-flop. The old values stored on the flip-flop are shifted into the
neighboring flip-flop. The register can store up to eight bits of data. When the desired bits have
been input into the register then a RCLK is sent a rising edge, resulting in the values stored in the
flip-flops to be moved onto the output pins. Therefore, we can control which signal gets set into
the HIP4086 and only use six pin on the ATMEGA328.

10

Circuit Safety and Power Distribution

Power from the power supply enters the motor driver system in the module shown in Figure 7
below. The power is first sent through a 12A fuse. This is in place to protect the power supply
from short circuits that occur in our system. The fuse is not expected to protected any

11

components because time for the fuse to blow is slow and the individual component current
ratings can be lower than our max 10A being used by the motor windings. Short circuit cases can
occur when the MOSFETs in the inverter bridge break and allow current to flow freely.

Several of components in our system do not work at the input voltage of 48V. This has led to the
need for converting the 48V input into several different voltages. As seen in the Figure 7, in
addition to 48V there is also 12V and 5V supplied. To accomplish the conversion two buck
converters, LM2576HVT-12 and LM2576HVT-5.0, were used. For the converters to work
additional capacitors, inductor, and catch diode were needed. The parts selected for the buck
converter circuit followed the recommendations of the LM2576HVT datasheet.

12

Hardware Selection

HIP4086 Three-Phase MOSFET Driver

The HIP4086 driver chip was chosen because of its level
of available documentation online, relatively simple I/O
structure and its easily adjustable “dead time” delay
between switching high and low side MOSFETs of the
same phase. The programmable dead time delay was a
significant deciding factor when choosing this chip, as it
removes some of the possibility of current shoot-through
when switching between opposite pairs of MOSFETs.
The HIP4086 also operates well within our specified parameters with a supply voltage of 12V, a
maximum bootstrap supply of 95V and rise and fall times of 60ns and 40ns, respectively. These
times correspond to gate capacitances of 1000pF, thus
being acceptable for our MOSFETs given our switching
frequency of 31kHz.

LM2576HVT-12 and LM2576HVT-5 Buck
Regulator

In order to provide power to the ATMEGA328P, hall effect
sensor, current sensor, LCD and HIP4086 driver, we used
the LM2576HVT 5V and 12V buck regulators. These
regulators were chosen due to their high input voltage of up
to 65V and maximum supply current of 5.8A. These
regulators also demonstrated very small ripple voltage
given the load they are supplying, as well as being very
efficient when compared to linear type regulators for the
same application. These regulators did require some
passive peripheral components in order to operate which
increased the total cost, but was much more simple to
implement than building them ourselves.

15SQ100 Freewheeling Diode

To manage the large back-EMF generated by the motor
when switching between phases we used fast Schottky

13

diodes as freewheeling diodes across each MOSFET. These diodes in particular were rated
appropriately for our driver with a peak reverse voltage of 100V and a continuous forward
current rating of 15A. Most importantly these diodes have a maximum recovery time of 500ns
which allows very little time for negative current spikes to persist.

IRF530N N-Channel MOSFET

Considering the large load that our motor drive supplies, we
were very particular on our choice of switches. That is why
we went with the IRF530N. These FETs have a voltage rating
of 100V, a continuous current rating of 17A, a relatively low
gate capacitance of 920pF (for faster switching times) and
perhaps most importantly, an on resistance of 90mΩ. Given
these specifications, they were not excessively expensive and
were actually cheaper than many FETs with similar ratings.
The low on resistance was a very desirable trait of this device
because it meant very low losses even at higher switching
speeds (such as 31kHz). The low gate capacitance was also

appealing to us because it allowed the HIP4086 driver chip to perform to the best of its abilities.

ATMEGA328P

For the motor to run and be controlled, multiple tasks need
to be performed. These include generating PWM signals,
adjusting duty ratio, switching multiplexer selector inputs,
measuring current, writing to a LCD, and switching to
position control. In order to accomplish these tasks we
used an ATMEGA328P 8-bit microcontroller. The
ATMEGA328P was chosen due to its lower cost than
using an Arduino Uno or MEGA 2560. An Arduino
MEGA 2560 costs $45.95 because of all the added
hardware and money going to support the Arduino
platform. These costs were not necessary for mass
production because there is no need for the controller to be
reprogram and there already is a 5V voltage regulator in

our design. By using an ATMEGA328P we reduced the cost down to $1.15. Also, the
ATMEGA328P was easier to integrate into our circuit because it can be placed directly onto a
breadboard or PCB. Additionally, we could use the same code and IDE that an Arduino uses.

14

74LS153 Dual 4:1 Multiplexer

In order to send the proper set of six simultaneous signals to the
HIP4086 driver chip we needed a means of controlling which
inputs received what. Although the Arduino was capable of sending
six individual PWM signals at the same frequency, not all of these
signals were referencing the same timer signal. This resulted in the
PWM signals being out-of-phase from each other and ultimately
unusable. To solve this problem we used six 4-to-1 multiplexers
each with the same inputs of PWM, , 5V, and 0V. Each ofP W M
these multiplexers also received two binary inputs from the Arduino to select which input signal
the respective multiplexer would output. This allowed for much more control over which signals
the driver chip received and ensured that the signals were consistent.

SN74HC595N 8 Bit Shift Register

A consequence of using six 74LS153 multiplexers is that each
multiplexer uses two selector pins. Thus, twelve GPIO pins on our
microcontroller are needed to control the multiplexers. Unfortunately,
the ATMEGA328P microcontroller only has 13 GPIO pins and other
parts of the project also needed GPIO pins. To reduce the number of
pins needed to control the multiplexers two SN74HC595N shift
registers were used. A shift register takes in a serial input on every
rising edge of the SRCLK from the ATMEGA328P and outputs all
eight bits in parallel on the rising edge of RCLK. The parallel output
is used to control the multiplexers. This reduced the total amount of
GPIO pins down from twelve to four.

Short Circuit Protection Fuse

In the case of a short circuit, a 12A slow blow fuse followed
the 48V power supply. This prevents damage to the power
supply if power and ground accidentally get connected. The
12A rating on the fuse will work because there will be a very
large amount of current running through it in the case of a
short circuit. The fuse, however, will not protect the circuitry
in case of currents over 10A, since even a fast acting fuse
would not blow quick enough to protect from transients.

15

Circuit Containment Vessel

We produced a box to help create a safer, easier to use product. We laser-cut the box out of ⅛”
birch wood. The front of the box has all the controls and displays that the user of this product
will need. This makes our driver easy to figure out as well as looking professional and clean. The
sides and back of the box have large ventilation slots cut out to allow for ample airflow and
cooling of the MOSFETs.

Common Mode Filter

In series with each phase output going into the motor is a
winding around a common inductor core. We used a powder
inductor core wound with three sets of 20 turns of 16 gauge
magnet wire. This provides each phase with an inductance
of about 77μH (From Professor Christie). The purpose of
the common mode choke is to reduce the amount of noise
seen by the output of each driver phase, generated by the

motor while imposing very little impedance on the normal current flow.

LCM-S01602DSR/A LCD Display

For our speed and current display, we used the
LCM-S01602DSR/A LCD display. This display was chosen
because of the level of available documentation online, as well
as its ability to easily work with one of the built-in Arduino
libraries (LiquidCrystal.h). This display also has a bright
backlight and adjustable contrast for enhanced readability under
various lighting conditions.

16

CQ-209A Current Sensor

We placed a CQ-209A current sensor so that it samples the current going directly into the
H-bridge from the 48V rail. This location was chosen so we would ensure that the current
reading displays the current flowing into the phases, and not the current used for the voltage
regulators, microcontrollers, and the rest of the circuit. The current sensor samples the current
flowing through the pins using a Hall sensor, and outputs a voltage which is proportional to
current value. Figure 19 shows the relationship.

Figure 19: Output voltage vs current input (from CQ209A datasheet)

The sensitivity of the sensor, 66mV/A, is found in the datasheet and gives the slope of the above
graph. Equation 1 shows the input current with respect to output voltage:

 (1)
The processor reads a voltage from 0V to 5V as an integer value from 0 to 1023, so we converted
the analog input to the voltage measurement using equation 2:

 (2)
Combining equations 1 and 2, we got the equation to calculate and display the current going into
the phases:

 (3)

17

However, when this was implemented with the circuit, the current readings on the display were
lower than the ammeter readings at higher values. To find the relationship between the actual
current and what our equation was producing, we plotted several points of each. The closest
relationship we found was:

 (4)
This is the final equation we used to output the correct current onto the display based on a best fit
line from measured data points over a range of current levels.

4Q Operation

Commutation

We used the following commutation table to program which MOSFETS need to receive the
PWM signal, which MOSFETS need to receive the inverted PWM signal, and which MOSFETS
need to be off in each of the six steps.

Table 1: Commutation Table

18

Speed Control Knob

The speed control knob lets the user adjust the speed of the rotor from 0 rpm to 3200 rpm. This is
achieved by mapping the output of a potentiometer from 0-5V to a speed range of 0-3200rpm.
The analog to digital converter (ADC) of the Arduino has a resolution of 10bits, so our speed
setting has a theoretical resolution of ~3rpm. This is good enough for our purposes.

Closed Loop Speed Control

To eliminate the possibility of incorrectly coding a control algorithm, we opted for downloading
a PID controller library built for Arduino. This robust library was developed by Brett
Beauregard. In practice the reference rpm from the speed control knob is compared to the actual
rpm calculated from the Hall effect sensors. This error is computed by the PI controller and the
algorithm automatically adjusts the duty ratio accordingly (if the actual rpm is lower than the
reference, the duty ratio is set higher and vice versa). The Kp and Ki constants were adjusted to
achieve low rise time and overshoot and fast settling time.

Regenerative Braking

To achieve regenerative braking, a diode is placed in series with the power supply input to
prevent current from flowing into the non-regenerative power supply. A large parallel capacitor
is used to store the energy released from braking. A switch is used to change the duty ratio of the
MOSFETs from the running duty ratio to 50% over a short period of time. This allows for
smooth braking without causing too much voltage rise on the regenerative capacitance.

Bidirectional Operation

At 50% duty ratio, the average terminal voltage is 0 volts and the rotor is at a standstill. At a duty
ratio higher than 50% the average terminal voltage is positive and so the rotor rotates in the
positive direction. At a duty ratio lower than 50% the average terminal voltage is negative and so
the rotor rotates in the negative direction. The reversing switch changes the direction of rotor
rotation by sampling the current duty ratio and mirroring it across the 50% point. (If the current
duty ratio is 100%, the reversing switch makes it 0%, if the current duty ratio is 25%, the
reversing switch makes it 75%, and so on). The change in duty ratio is applied over a period of
time to allow for a more smooth transition from one direction to the other without a massive
spike in current.

19

Speed Display

The speed is calculated by counting the number of step changes the rotor makes in a half second,
which is sensed by the Hall Effect Sensor. Each revolution has 24 steps, so to convert the speed
to RPM, we take the number of step changes per half second, divide by 24 to get revolutions per
second, and multiply by 120 to get revolutions per minute.

P M (StepCount / 24) 20 R = * 1 (5)

Position Control

For added safety, we added a switch to enable and disable position control. This allows the user
to choose between operating the motor under high speed with speed control, or under zero speed
with position control. When the position control switch is enabled, a position knob references to
a specific location on the rotor. One revolution on the rotor has 24 steps that can be sensed by the
Hall effect sensors, so the position knob can reference between 24 locations on the rotor, from 0
to 345 degrees, in 15 degree increments.

Standards

IEC 60287) - Calculation of permissible current in cables at steady state rating

This standard describes the maximum current that a conductor of given dimensions can safely
carry. We paid attention to this standard when designing the high current carrying traces of the
inverter bridge PCB, as well as when we chose the magnet wire gauge for the common mode
filter.

1-1986) - IEEE Standard General Principles for Temperature Limits in the
Rating of Electric Equipment and for the Evaluation of Electrical Insulation

Our design followed these standards by ensuring that the parts of our circuit with the highest
power dissipation received ample airflow, and the conductors used for high current applications
were sized appropriately to minimize resistive losses and used insulation with a temperature
rating higher than what is expected under normal operation.

20

315-1975) - IEEE Standard for Graphic Symbols for Electrical and
Electronics Diagrams

This IEEE standard relates to how circuit diagrams and schematics are drawn. It gives guidance
on the standards to follow when creating a diagram such that another party may be able to easily
interpret the circuit diagram themselves.

UL-1741) - Standard for Inverters, Converters and Controllers for Use In
Independent Power Systems

This standard covers information about constructing inverters and converters that are not
connected to any grid. Therefore, our circuit applies to this standard. The standard covers how to
properly choose your components based on the worst case current and voltage that would be
applied to it. We followed this while choosing out MOSFETs and diodes [1].

IEEE Policies Section 7.8) - IEEE Code of Ethics

Throughout the project, we have followed the ethics policies set by IEEE. First, we have been
forthright with our design and its capabilities. Next, our members have improved their
understanding of the concepts used in the project, its uses, and its possible consequences. Also,
members have sought out help when it came to our design, took into consideration the criticism
other have given, and corrected mistakes. Likewise, we have helped and supported our fellow
colleagues in their work. Lastly, all persons that helped or interacted with our group were never
discriminated against.

Bill of Materials

Below is the bill of materials for our driver circuit. We based the unit prices on 1000 or more
units being produced. This is more realistic for actual manufacturing costs rather than the more
expensive prototypes. Our motor driver circuits will costs approximately $46.73 for each unit.

21

Table 2: Bill of Materials (prices from www.digikey.com)

Business Plan
Our company, Loomis Drives, has designed a motor drive that operates under four quadrant (4Q)
motoring to achieve precise control, fast response time, and position control of the rotor, proving
to be more capable than a motor drive with two quadrant (2Q) motoring.

Our motor drive is intended for use with a three-phase brushless direct current (BLDC) motor. It
has been built as a standalone device with the inputs consisting of a 48V supply and the motor
hall effect sensors and is rated for 10 amps. Our motor drive is capable of speed control,
direction control, position control, and also has regenerative braking, all while showing the
real-time state of the motor on a dedicated display.

The motor drive is encapsulated in our uniquely designed case to separate the user from the
circuitry. The case not only protects the user from coming in close contact with high voltages,

22

but it also protects the drive from being damaged due to user negligence. The case is designed
with large holes on the sides to allow for proper ventilation and all the user input knobs and
switches are properly labeled to make for an easy to use interface.

In order to minimize our risk factors and maximize our profits, our company is implementing
several precautionary measures. First of all, we plan on obtaining sufficient capital before
starting production (at least one million dollars to cover first quarter costs). We will also research
the customer base and their needs and then produce different drive variations to best suit
customer needs. Finally, by buying and assembling our motor drives in China, we will be able to
undercut competitor prices.

Our main market is the industrial robots industry. As seen in Figure 20, 2017 is expected to see a
sale of approximately 330,000 industrial robots with an annual 15% increase. A typical robotic
arm requires about five drives, which provides a potential market for 1.65 million drives.
Capturing just 5% of this market space will provide us with a demand of 82,500 drives in our
first year. Our drives cost $46.73 (cost break down in Table 2) to produce, so at a sale cost of
$200 per drive, we expect annual profits of 12.6 million dollars with a minimum 15% annual
growth. In concurrent years, we plan to add to our customer base by pursuing the 3D printing
market, as well as other robotic markets.

Figure 20: Industrial robot sales from 2014 to 2015 and forecasted 2016 to 2017 sales. The year to year
trend suggests a 15% annual increase [2].

23

Advice

Some advice for future students building a drive for a BLDC motor:
● The common mode filter is useful for making the motor run more smoothly
● Adding snubbers helps to eliminate a lot of the voltage spikes that tend to harm chips
● Using shorter wires/circuit boards cuts down on stray inductance
● Order more parts than you think you might need, and order them well ahead of time
● Try to organize purchasing common parts with other groups to get bulk discounts and

spread the cost of shipping between groups.
● Making a PCB will make your circuit more robust/likely to work every time you test it
● Familiarize students with the makerspace and other resources available on campus.
● Test all previous functionality of the driver after every software update

24

References

[1] Zgonena, Tim. "UL1741 The Standard For Inverters, Converters And Controllers For Use In
Independent Power Systems". N.p., 2017. Web. 9 Mar. 2017.

[2] "Statistics - IFR International Federation Of Robotics". ​Ifr.org​. N.p., 2017. Web. 5 Mar.
2017.

25

Appendix
Arduino Motoring Code:
#include <PID_v1.h>

//Setup PID
double Setpoint, Input, Output;
double Kp = 0.02;
double Ki = 0.05;
double Kd = 0.0;
PID motorPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);
double pidDuty = 0;

//Misc vars
long count = 0;
long prevCount = 0;
long pos = 0;
long prevPos = 0;
int dStep = 0;
long dPos = 0;
float RPM = 0;
long prevTime = 0;
int prevRev = 0;
long stepCount = 0;
int counter = 0;
int loops = 250;

//Reverse Var
int revPin = 7;
boolean reverse = false;
boolean prevReverse = false;
int rDist = 0;

//BRAKING
int brakePin = 8;
boolean braking = false;
boolean prevBraking = false;
int releaseBrakes = 0;

//Position Control vars
int currentPos = 0;
int oldPos = 0;
int posSwitch = 6;
int posPin = A2;
boolean posControlEnabled = false;
long deltaX = 0;
long count4 = 0;

//Duty ratio var
int duty = 0;

// PREP FOR FAST ANALOGREAD
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

26

// MUX BIT OUTPUTS
int mux1A = 49; //PL0
int mux1B = 48; //PL1
int mux2A = 47; //PL2
int mux2B = 46; //PL3
int mux3A = 45; //PL4
int mux3B = 44; //PL5
int mux4A = 43; //PL6
int mux4B = 42; //PL7
int mux5A = 22; //PA0
int mux5B = 23; //PA1
int mux6A = 24; //PA2
int mux6B = 25; //PA3

// HALL SENSOR INPUTS
int HallA = 50;
int HallB = 51;
int HallC = 52;

// HALL EFFECT READING VARS
char my_varA = 0;
char my_varB = 0;
char my_varC = 0;
int A;
int B;
int C;

// MOTOR STEP LOCATION
long curStep = 0;
long prevStep = 0;
long prevStep2 = 0;

void setup() {
 //Initialize Hall effect input pins
 pinMode(HallA, INPUT);
 pinMode(HallB, INPUT);
 pinMode(HallC, INPUT);

 //SETUP HALL INTERRUPTS
 attachInterrupt(digitalPinToInterrupt(HallA), runMotor, CHANGE);
 attachInterrupt(digitalPinToInterrupt(HallB), runMotor, CHANGE);
 attachInterrupt(digitalPinToInterrupt(HallC), runMotor, CHANGE);

 //Initialize mux outputs
 DDRL = 0b11111111; //outputs
 DDRA = 0b11111111; //outputs

 // SET PWM FREQ (31kHz)
 TCCR2B = TCCR2B & 0b11111000 | 0x01;

 // SET INVERSE PWM
 TCCR2A = TCCR2A | 0x30;

 // INCREASE analogRead() SPEED
 sbi(ADCSRA, ADPS2) ;
 cbi(ADCSRA, ADPS1) ;
 cbi(ADCSRA, ADPS0) ;
 //Initialize pot input
 pinMode(A1, INPUT);

27

 //SET INITIAL PWM DUTY RATIO
 duty = 128; //50%
 analogWrite(10, duty);
 analogWrite(9, duty);

 //Detect the initial rotor step location
 A = digitalRead(HallA);
 B = digitalRead(HallB);
 C = digitalRead(HallC);
 if (A == 1 && B == 0 && C == 0) {
 curStep = 1;
 } else if (A == 1 && B == 1 && C == 0) {
 curStep = 2;
 } else if (A == 0 && B == 1 && C == 0) {
 curStep = 3;
 } else if (A == 0 && B == 1 && C == 1) {
 curStep = 4;
 } else if (A == 0 && B == 0 && C == 1) {
 curStep = 5;
 } else {
 curStep = 6;
 }

 pinMode(11, OUTPUT);
 pinMode(posSwitch, INPUT);
 pinMode(posPin, INPUT);
 prevStep = curStep;
 prevStep2 = curStep;

 //Initialize all MOSFETs LOW!
 turnOff();

 //Initialize PID function
 Input = RPM;
 Setpoint = (double) map(analogRead(A1), 0, 1024, 0, 3000);
 motorPID.SetMode(AUTOMATIC);
 motorPID.SetOutputLimits(128, 250);
 motorPID.SetSampleTime(50);
}

void loop() {
 //Output to MUX's
 if (!posControlEnabled) {
 runMotor();
 getRpm();
 Input = RPM;
 Setpoint = (double) map(analogRead(A1), 0, 1024, 0, 3000);
 motorPID.Compute();
 managePWM();

 // Run once per ### loops
 if (count - prevCount >= loops) {
 //Check direction/braking and set the PWM duty ratio accordingly
 prevCount = count;
 }
 count++;
 }

 updateRotorPosition();
 //Position control

28

 int enab = (int)(PINH & (1 << PH3));
 if (enab != 0) {
 enab = 1;
 }
 if (RPM == 0 && Setpoint == 0 && enab == 1) {
 posControlEnabled = true;
 currentPos = map(analogRead(posPin), 0, 1024, 0, 23);

 if (count4 >= 1000) {
 if (currentPos != oldPos) {
 deltaX = currentPos - oldPos;
 oldPos = currentPos;
 }
 count4 = 0;
 }
 count4++;

 if (pos < 0) {
 pos = pos + 24;
 }

 while (deltaX > 0) {
 duty = 132;
 updateRotorPosition();
 if (curStep != prevStep) {
 deltaX--;
 }
 //UPDATE PWM DUTY RATIO
 analogWrite(10, duty);
 analogWrite(9, duty);
 runMotor();
 }
 duty = 128;
 while (deltaX < 0) {
 duty = 123;
 updateRotorPosition();
 if (curStep != prevStep) {
 deltaX++;
 }
 //UPDATE PWM DUTY RATIO
 analogWrite(10, duty);
 analogWrite(9, duty);
 runMotor();
 }
 duty = 128;

 //UPDATE PWM DUTY RATIO
 analogWrite(10, duty);
 analogWrite(9, duty);
 if (digitalRead(posSwitch) == LOW) {
 posControlEnabled = false;
 }
 }

}

void updateRotorPosition() {
 //GET THE ROTOR POSITION
 if (pos == 0 && prevPos != 0) {
 dPos++;

29

 }
 prevPos = pos;
 if (prevStep != curStep) {
 dStep = curStep - prevStep;
 if (dStep == 1 || dStep == -5) {
 //FWD
 pos++;
 } else {
 //BWD
 pos--;
 }
 if (pos == 24 || pos == -24) {
 pos = 0;
 }
 prevStep = curStep;
 }
}

void runMotor() {
 // READ & GET THE HALL SENSOR STATES
 my_varA = (PINB & (1 << PB3));
 my_varB = (PINB & (1 << PB2));
 my_varC = (PINB & (1 << PB1));
 A = (int)my_varA;
 B = (int)my_varB;
 C = (int)my_varC;
 if (A != 0) {
 A = 1;
 }
 if (B != 0) {
 B = 1;
 }
 if (C != 0) {
 C = 1;
 }

 // SET MUX STATES BASED ON STEP LOCATION
 // AND MAKE THE MOTOR TURN!
 if (A == 1 && B == 0 && C == 0) {
 PORTL = 0b11100101;
 PORTA = 0b00000000;
 curStep = 1;
 } else if (A == 1 && B == 1 && C == 0) {
 PORTL = 0b01011110;
 PORTA = 0b00000000;
 curStep = 2;
 } else if (A == 0 && B == 1 && C == 0) {
 PORTL = 0b01010000;
 PORTA = 0b00001110;
 curStep = 3;
 } else if (A == 0 && B == 1 && C == 1) {
 PORTL = 0b11100000;
 PORTA = 0b00000101;
 curStep = 4;
 } else if (A == 0 && B == 0 && C == 1) {
 PORTL = 0b00001110;
 PORTA = 0b00000101;
 curStep = 5;
 } else {
 PORTL = 0b00000101;
 PORTA = 0b00001110;

30

 curStep = 6;
 }
}

void turnOff() {
 PORTL = 0b11101110;
 PORTA = 0b00001110;
}

void managePWM() {
 // Adjust duty normally if not changing direction/braking
 if (rDist == 0 && !braking && releaseBrakes == 0) {
 if (reverse) {
 duty = 250 - (int)Output;
 //duty = map(analogRead(A1), 0, 1024, 128, 10);
 } else {
 duty = (int)Output;
 //duty = map(analogRead(A1), 0, 1024, 128, 215);
 }
 }

 //READ REVERSE PIN
 reverse = digitalRead(revPin);
 if (reverse != prevReverse) {
 reverseMotor();
 prevReverse = reverse;
 }

 //READ BRAKING PIN
 braking = digitalRead(brakePin);
 if (braking != prevBraking) {
 brakeMotor();
 prevBraking = braking;
 }

 //If braking switch is turned off go back to
 //normal duty over a period of time
 if (releaseBrakes > 0 && !braking) {
 if (reverse) {
 duty--;
 releaseBrakes--;
 } else {
 duty++;
 releaseBrakes--;
 }
 }

 //Adjust duty ratio to new value over a period of time
 if (rDist > 0) {
 if (reverse) {
 if (braking) {
 duty++;
 rDist--;
 } else {
 duty--;
 rDist--;
 }
 } else {
 if (braking) {
 duty--;
 rDist--;

31

 } else {
 duty++;
 rDist--;
 }
 }
 }
 //UPDATE PWM DUTY RATIO
 analogWrite(10, duty);
 analogWrite(9, duty);
}

void reverseMotor() {
 //Reverse switch has been flipped
 if (reverse) {
 //prev state was forward
 rDist = (2 * (duty - 128));
 } else {
 //prev state was reverse
 rDist = (2 * (128 - duty));
 }
}

void brakeMotor() {
 //Brake switch has been flipped
 if (braking) {
 if (!reverse) {
 rDist = duty - 128;
 } else {
 rDist = 128 - duty;
 }
 releaseBrakes = rDist;
 }
}

void getRpm() {
 // CALCULATE RPM
 if (curStep != prevStep) {
 stepCount++;
 }
 prevStep = curStep;
 if (millis() - prevTime >= 250) {
 RPM = (stepCount / 24.0) * 240.0;
 stepCount = 0.0;
 prevTime = millis();
 }
}

32

