A 3D Inverted Pendulum For Testing
Control Algorithms (June 8, 2017)

Athina Ebert, Undergrad, UWEE, Kyle Hess, Undergrad, UWEE,
Ryan Mills, Undergrad, UWEE, XiaoCheng Zhang, Undergrad, UWEE

Abstract—This report aims to convey the design and
approach of our capstone project, quick-balancing cube
(QB®). A three dimensional inverted pendulum. It will
detail our initial approach to the project, problems we
encountered, achieved functionalities, hardware and
software components, and possible future
improvements.

Figure 1: Completed cube assembly on edge.

Index Terms - Angular position, Controls,
Counter-torque, Inverted pendulum, Linear
Quadratic Regulator, Microprocessor, Moment
of inertia, Motor drive, Wireless.

L INTRODUCTION

Our goal was to create an inverted
pendulum in the form of a cube. An inverted
pendulum is an object with a center of mass
above its pivot point. Having the center of mass
above the pivot point makes for an unstable
system. The object will tend to fall over when it
is not perfectly balanced, or when no external
force is applied. To balance the object and keep
it stable, a controlled counter force must be
applied. Generating the counter force for our

cube will be accomplished by using the concept
of the conservation of angular momentum.

Most inverted pendulum systems exist in two
dimensions. For example, a two-wheeled
balancing robot or an extended arm with a pivot
point at one end.

=
s
v

Q_O

Figure 2: Moving cart with inverted
pendulum.
www.wikipedia.com

These systems only require measurement and
correction of angular position in a single plane
whereas our cubic system requires the same type
of control, but in three individual planes
simultaneously. This poses an extra challenge
compared to most other inverted pendulum
problems because each of the three axes are
inherently coupled together. This is a problem
that is not frequently addressed in more
simplified systems. We attempted to solve this
complex problem by breaking it into three
simple inverted pendulums problems. Achieving
this goal would prove that some coupled systems
could be simplified into more manageable
problems. This is not the case.

Controlling the angular position of the cube
will be achieved through a counter-torque
generated by the three internal motors, each

spinning on an axis perpendicular to the others
(X, y, z). These motors will accelerate
high-inertia flywheels in order to generate a
counter-torque on the cube body. The torque
will be controlled such that it precisely cancels
the rotation of the cube on one of its axes.
Torque direction will be determined by the
gyroscope sensor feedback and control
algorithm.

II. BACKGROUND & RELATED WORK

Similar projects and research have been done
by Faculty of Electronics, Telecommunications
and Information Technology from University
POLITEHNICA of Bucharest and Department
of Mechanical and Process Engineering from
ETH Zurich. The general approach of our
project is similar: receive data from multiple
IMUs to determine the angular position and
velocity of the cube, and use motors to drive
three reaction wheels to adjust the position of
the cube. The detailed solution of our project
might be different, i.e. we might use different
IMUs, motor drives and control loops. Despite
that, their research has been an important
reference to us.

IIT. TECHNICAL APPROACH

A. Goals

The goals for the final product design are the
following:

e The cube will be able to balance on a

specified edge or corner.

e The cube must operate without any

external inputs or physical interference

e The cube must be completely wireless

while operating.

We chose to abandon the requirement of a
“jump-up” feature due to the additional
mechanical systems that were needed. Starting
the cube in an unstable position proved
challenging enough.

B. System

24VBattery | _ | 54y Battery b= === o e o e EEEEE]
{ Charger } { v Battery} [! |
T h i !

'

LY

Motor Controller Motor Controller| |Motor Controlle:
Legend X axis Y axis Z axis

]

'
I
24V Power = = = : \ ¥ \
5V Power = = - p Py Tpepgs. 14 RS
24V . :

PWM o
Dataline €3> 24Vto 5V [T 77
Buck Converter

Figure 3: Project system schematic diagram,

The initial design of our project relied on the
input of the angular velocity of three motors,
values sent from three accelerometer-gyroscope
IMUs to the microprocessor via I’C serial bus.
The microprocessor will then calculate the
angular position and velocity of the cube from
those values, then calculate the necessary current
for each motor, and output a pulse width
modulated (PWM) signal to the motor drivers.

C. Hardware

We are using the BNOO0S55 IMU to measure
the angular position of the cube.

Figure 4: BNOOS5 ‘Absolute’ IMU

It has nine degrees of freedom (DOF) with
three-axis accelerometer, a three-axis gyroscope,
a magnetometer (compass), and communicates
via I°C communication protocol. The data
provided turns out to be much more stable and
accurate than the six DOF MPU-6050 IMUs we
initially chose.

In order to detect the exact angular position
of the cube, we used three BNOO055s, each to
determine the pitch and roll angle of one face of
the cube. However, the python library we found
for the IMU was not designed for multiple IMU
input due to the lack of an IMU port selection
function. The original I°C selection method was
to get the default I°C bus (get i2c device()), in
which case we can only use I°C-1.

o = L3¢ ETETITRINR sodvass, **knargs

Figure 3: Original 12C Setup Function

To solve that, we added a new parameter
“bus” in the initialization function, along with
using another method that allows us to select I*C
buses (Device()).

t Adefrult_OPIC

Figure 6: Updated 12C Setup Function

The updated library can be found at
https://github.com/ryan1mills/QB-3/tree/master/
Adafruit Python BNOO0S55_QB%SE3.

Figure 7: Nanotec DF45 BLDC Motors

For the motors, we chose to use the Nanotec
DF45. This is a 24V three phase brushless DC
(BLDC) motor with Hall effect sensor outputs.
We chose this motor due to its small size, high

torque output and relatively low operating
voltage (Appendix A). This motor has a
maximum speed of 4840 RPM, a maximum
power consumption of 65 watts and a torque
rating of 0.13Nm. Which is more than enough to
quickly accelerate our flywheels.

Figure 8: Complete DF45 Motor Driver PCB

To properly drive BLDC motors, we needed
a digital motor driver board that operated in four
quadrant (4Q) motoring (complementary
switching). The only commercial 4Q drivers that
matched our motors were either too expensive
for our budget, or were too large to be physically
located within the wireless cube. To overcome
this problem, and since we had done so in an
electric drives class, we designed our own motor
drivers. These meet all of the requirements to
drive the Nanotec DF45 BLDCs. These drivers
are even capable of delivering a current sensor
output signal to the microprocessor. This is
crucial for accurate control of the motor torque.
Current control is achieved by measuring the
current delivered to each motor with the
ACS712 Hall effect current transducer. This
value is then utilized within our control
algorithm to determine the necessary corrections
that must be made to the motor output signals.
The motor driver uses an on-board Atmel
Atmega328p MCU to control the commutation
of the motor phases based on inputs from the
DF45 Hall effect sensors (Appendix D).

The various components inside of our system
run at either 3.3V, 5V, 12V, or 24V. In order to
power the cube from a 6S LiPo battery a voltage
conversion board was designed. To create a

https://github.com/ryan1mills/QB-3/tree/master/Adafruit_Python_BNO055_QB%5E3
https://github.com/ryan1mills/QB-3/tree/master/Adafruit_Python_BNO055_QB%5E3

regulated 5V and 12V a switching buck
regulator was used with the necessary
capacitors, diodes, and inductors added. Because
the battery voltage can vary between 21V and
25.2V a buck-boost controller was needed to
achieve a consistent 24V.

For the microprocessor, we are using a
Beaglebone Green Wireless. This allows for
wireless communication, which has significant
advantages when programming the processor
while it is at the center of an enclosed cube. It
also has several accessible GPIO, ADC, and 12C
pins to allow for control of our system.

The BeagleBone being the brain of the cube
has many connections coming and going from it.
While it does have headers that wires can easily
connect to it, the wires are loose and may come
out while in operation. To solve this a PCB that
connects to the headers securely was created. It
has connectors that can easily connect the motor
driver, power distribution board, and three
IMUs. Also, since the hall effect sensors output
5V and the beaglebone uses 3.3V logic, a logic
voltage converter was designed and used.
Further, the current sensor, ACS712, can output
up 5V, but the ADC on the BeagleBone is
limited to 1.8V. Thus, a voltage divider was
needed to reduce the voltage output of the
current sensor.

The physical aspect of this challenge, counter
torque, would be solved using three flywheels,
one for each axis. We knew the general shape of
the wheels we wanted and optimized the size to
fit within the cube, but still have most of the
mass as far from the center as possible. To do so
we initially chose steel because it is an
inexpensive and dense material. When we
brought our design to be machined at the UW
Aeronautics and Astronautics department, the
shop manager suggested we switch to brass
because it is easier to machine and he was able
to provide the material from their scraps.

|‘»

!;;

Figure 9: Model of acrylic cube casing,
3D-printed motor mount, motors and brass
flywheels

Finally, we needed the physical cube
structure. The design began with the following
initial requirements:

e Encases all hardware components

e Relatively inexpensive materials

e Reasonable to fabricate given our
limited resources and experience

e Robust enough to handle the stress of
our operation

For the outer case we decided on acrylic
because it is easy to cut into any shape or size in
two-dimensions using a laser cutter. The next
consideration was how the motors would be
mounted within the cube such that there is one
for each axis. To avoid interferences, each motor
needed to be mounted to a separate
perpendicular inner face. The resulting shape of
the mount would have been very difficult to
machine and heavy. For this, we decided to 3D
print them with as much structural integrity as
possible to make of for using a softer material.
The remaining challenge was to mount all of the
electrical components (beaglebone and cape,
IMUs, driver boards, power distribution, battery)
within the cube such that they are secure and
semi-accessible. This was worked out near the
end of the project when all of the rest of the
hardware was finalized.

D. Software

No specific programming software is
required for the Beaglebone Green. Right now
we are using a combination of the Cloud9 IDE, a
browser-based IDE and terminal, and an SSH
terminal on a laptop for programming purposes.
Python and C are the primary programming
languages for the BeagleBone, and we have
experimented with both. Most of the control
algorithm software for the cube was written in
Python due to the abundance of libraries for our
IMUs and other GPIO functionality.

E. Control loop

We planned to use an LQR control loop
algorithm for the controls system [1]. The state
space representation of the LQR control loop is
as follows:

x(¢) = Ax(t) + Bu(?)
y(£) = Cx(t) + Du(r)

Where: x(¢) is the current state of the system,
A is the ‘Dynamics matrix,” u(¢) is the input to
the system (applied motor current), and y(¢) is
the output.

Figure 10: System state matrix.

Table 1. LQR Matrix Parameters

Name Value Unit
Reaction Wheel Mass (Mw) 0.175 Kg
Pendulum Mass (Mb) 2.7 Kg
Dist. From Pivot to CoG (Lb) 0.106 m
Dist. From Pivot to CoG of 0.106 m
Wheel (Lw)
Moment of Inertia of 8.68% Kgm?
Wheel+Motor (Iw) -4
Moment of Inertia of The ? Kgm?
Pendulum (Ib)
Torque Constant (k) 0.0369 Nm/A

0 1 0
g(MpLp+MwLw) Cg Cw
A= TotMw L%, TotMw L, TotMw L%,
_ 9(MpLp+MwLw) Cg 7CW(IW+IB+MWL€1’)
IB-I-A/IVVL%V IB‘HMWL%V Iw(lg-\-lqu%)v)

Figure 11: System ‘dynamics’ matrix

0
N
Vo= Tp+Mw L2,
ko (Iw+Ip+Mw L%,)
Iw(Ip+MwL%,)

Figure 12: System input matrix
These matrices contain the parameters of the
physical system that describe how the system
behaves under certain conditions. Where:

This control loop operates by predicting the
future state of the system (x) and controlling the
output parameters (motor current) to minimize
the measured error. This is accomplished by
continuously minimizing a quadratic cost
function using parameters obtained by solving
the Riccati differential equation. Luckily,
MATLAB has built-in functions that do just
that. All that we need to do is provide MATLAB
with our dynamics matrix A and our input
matrix B. MATLAB will then give us the
parameters necessary for minimizing the
quadratic cost function. This calculation will
need to be performed about each of the three
axes separately.

The variables in these matrices are as
follows: M is mass, I is moment of inertia, L is
length, g is gravitational acceleration, km is the
torque constant of the motors and C is the
coefficient of friction. The subscripts B and W
indicate which part of the system the parameter
relates to; “box” (cube) or “wheel” (reaction
wheel) respectively.

IV.RESULTS & ANALYSIS
The construction process did not go as well
as we expected. We originally decided to have
three motor driver boards to control three
motors. We purchased nine PCBs in total and

burnt out seven of them. However, the
remaining PCB works perfectly fine, which
enables the cube to balance on at least one of its
edges.

A. Initial hardware troubles

The first motor driver PCBs that we had
made were missing a single 5v connection to the
MCU. This led to sporadic resets of the motor
driver during operation, and ultimately, fried
components and traces. The next PCBs should
have worked fine, but voltage dips in the 5v
supply had gone unnoticed and led to more
random resets. This problem persisted for far too
long without a proper diagnosis and set us back
over two weeks. Our solution was to simply add
in a 5v battery with a shorter ground loop.

B. First finished prototype testing

The first finished prototype contains two
batteries, a power distribution board,
BeagleBone Green, IMU, and three motors with
attached flywheels. However, with only one
functional motor driver, which means only one
motor is operational.

Without knowing the moment of inertia of
the cube along the pivot point, or the exact
location of center mass, we were unable to apply
an LQR algorithm and used a simpler PID
control system instead. The cube was able to
balance on one edge for several seconds and
then slowly fall to one side as the motor speed
saturated. Video of the cube balancing can be
seen at https://youtu.be/Al67AnTL8aM.

C. Improvements to the controls

The initial PID parameters we used were
determined by viewing the motor PWM signal
duty ratio while moving the cube by hand. The
values were increased from zero until the duty
ratio changed rapidly in either direction. From
here the response of the cube was observed, and
the appropriate parameters were changed (tuned)
for a more desirable action.

We found that quite large values for Kp and
Ki were required to resist leaning in one
direction or another. This results from the motor
needing to accelerate quickly in either direction
without speeding up in one direction

continuously. The addition of a small Kd term
helped eliminate oscillations, but also caused the
motor to rapidly torque on the cube and expose
weaknesses in the mounting brackets.

Unfortunately, the control system is very
sensitive to the initial conditions of the cube.
Each time the system runs it must start in an
unstable, yet slightly balanced position to
generate the set-point for the PID algorithm. If
the starting position is slightly off to one side the
motor will begin to accelerate until max speed is
reached and the system cannot recover.

V. DISCUSSION

Comparing what we have achieved to the
work from which we drew our inspiration would
not be fair at this point. The work from the Cubli
team clearly out-performed our own. However,
our work does confirm the level of difficulty that
is involved with actively balancing an unstable,
nonlinear coupled system in three dimensions.

We are able to compare our results, for the
most part, to those of E. S. Lupu [1] and her
two-dimensional inverted pendulum problem.
Our results confirm hers in the sense that tuning
a PID control algorithm will never be perfect.
The PID algorithm doesn’t really ‘know’
anything about the system, it just tries its best.
Lupu went a step further and conducted the
same test with an LQR system as well,
unfortunately we didn’t get this far and cannot
compare. We do assume however, that if we
continued this project, and implemented LQR,
we would see results similar to hers: large
improvements over PID. This is due to the fact
that LQR uses known parameters of a system to
predict its response, and not just tuned values
that produce a decent output.

VI. IMPACT

Our project has various significance in the
field of Electrical Engineering and Astronautics.
Using flywheels to adjust angular position of a
certain object can be widely utilized in outer
space tasks. Meanwhile, similar applications can
make two-wheel automobile to be more
practical. With a device that allows a car to

https://youtu.be/Al67AnTL8aM

stand perfectly balanced on its wheels, it would
be a lot easier for a car to climb up and down a
hill.

VII. FUTURE WORK

The next step for this project is to finally
implement a working LQR control algorithm. In
order to do this, a few things will need to
happen. First, the motor drivers must be
redesigned with onboard power conversion, or
commercial units must be purchased. Next,
proper measurements of the system's center of
gravity and inertia must be made. This
information is crucial for the next step: A proper
simulation. A mathematical model that closely
resembles this unstable system must be
developed for designing LQR.

If possible, reinforce the frame of the cube. It
is surprising how much torque can be generated
by such small motors, and the forces they impart
flex parts of the system and introduce error.

VIII. CONCLUSION

In summary, we set out to balance a
3-dimensional, unstable system using the
principles of conservation of angular
momentum, and linear quadratic regulator
control. Due to our approach of designing and
building all of our own hardware we ran into
many obstacles and time constraints. This led to
a simplification of our project goals. In the end
we were able to accomplish the following:
Allow the cube to balance on a single edge for a
period of time, operate completely wirelessly,
and utilize our custom hardware. Imperfect
project management throughout the process also
contributed to the obstacles that we faced.
Developing a clear project outline with good
back-up plans initially is key. Overall this
project was a success in terms of a robotics and
controls problem.

IX. ACKNOWLEDGMENTS
Without the help we received from the
following individuals and institutions none of
this would have been possible:

- The A&A Machine Shop for their
donation of materials and CNC
machining services.

- Ben Ferleger for his informative lectures
on developing LQR control algorithms.

- Professor Howard Chizeck for his
consulting and feedback at each step of
the project.

- Professor Rich Christie for his class on
electric motor drives (EE 453).

- The UW College of Engineering, and
the Electrical Engineering Department
for funding this project.

- Adafruit Industries for their assortment
of Python libraries for the BeagleBone.

- Michael = Muehlebach, Gajamohan
Mohanarajah, and Raffaello D’Andrea
for their inspiring work on Cubli.

X. REFERENCES

[1TE. S. Lupu, “Cubic Structure Capable of
Balancing”, Faculty of Electronics,
Telecommunications and Information Technology,
University POLITEHNICA of Bucharest, Bucuresti,
Romania, 2015.

[2] M. Gajamohan, M. Muehlebach, T. Widmer,
R. D’Andrea, “The Cubli, A Reaction Wheel Based
3D Inverted Pendulum”, Department of Mechanical
and Process Engineering, ETU Zurich, Zurich,
Switzerland, Feb. 2011.

[3] M. Gajamohan, M. Muehlebach, I. Thommen,
R. D’Andrea, “The Cubli, A Cube that can Jump Up
and Balance”, Department of Mechanical and Process
Engineering, ETU Zurich, Zurich, Switzerland, Feb.
2011.

[4] M. Gajamohan, M. Muehlebach, R. D’ Andrea,
“Nonlinear Analysis and Control of a Reaction
Wheel-based 3D Inverted Pendulum”, Department of
Mechanical and Process Engineering, ETU Zurich,
Zurich, Switzerland, Feb. 2011.

XI. BUDGET
Description Cost
Motor Driver PCB V1 (Never received) $25.25
Motor Driver Stencil $14.36
Acrylic Sheet $25.84
Battery Charger $55.89
Batteries $77.82
AVR Programmer $16.95

BeagleBone Green $48.00

Brushless Motors $348.99
3D Printer Filament $22.99
IMU MPU 6050 $20.97
M3 x 10mm bolt $7.34
Solder Paste $15.54
3D Printer Filament Purple $22.99
Angle Bracket $9.11
MS5 countersunk bolt $11.59
MS nylock bolt $14.42
Double sided tape $5.98
XT60 Connectors $6.99
IMU $30.51
Acrylic Sheet $24.96
Center punch / Counter-sink bit $25.59
Motor driver PCB V2 $61.50
Motor driver PCB V3 $64.00
Power Distribution PCB $131.10
Driver Components $4.99
Driver & BeagleBone Components $316.89
ATMEGA328 & Resistors $21.37
Power Dist & Driver Components $359.66
Power & Driver Stencils $33.23
Mounting Hub $17.85
BeagleBone Cape PCB $70.40
Cape components $126.35
BeagleBone Cape stencil $14.42
Electrical Components $144.81
Electrical Components $207.01
Header and Standoff $20.98
M3 nyloc nuts $6.36
M3 Countersunk bolts $7.40
BNOO055 IMU $66.46
BeagleBone Black Wireless $89.99
Motor driver PCB V4 $64.00
Fly wheels $372.00
Symposium Poster $46.00
Total Spent $3,078.85

XII. RESOURCES

For this project we utilized various services,
both on and off campus. One of the most helpful
resources that we utilized was the CoMotion
Makerspace in Fluke Hall. Their laser-cutter, 3D
printers, PCB manufacturing equipment, and
hand tools proved to be invaluable to us. The
next most helpful resource was the Aeronautics
& Astronautics machine shop. The shop donated
brass for our flywheels and machined the
flywheels for a very reasonable price. The next
service, OSH Park custom PCBs, was critical for
producing our own electronics hardware.
Although this was not provided by the
university, it was still a very useful resource.
Finally, our lab space (BO11) was perhaps the
most important to us. Without a place to lock

away our equipment and work indefinitely we
would have struggled.

XIII. APPENDICES

V-870¥207157 40 3lva RWNOIS | 0% Tiw Y-8¥0¥2016¥40 QOAdY 3Iva NOILI¥0S30 | A3Y
oNoMa | v1909Z[SV [NST| zor | sawoweni 'SY| 718090 -8
@H)| so¢ X Uﬂ.ﬂh—n-mzxﬁc ar] vioLil -2
d0LON IT SSATHSNIE yig09z| s |OAY | 334 IWOS | @ A0 GLL09L 'L INJIGNY JONVHD | |
¥ v [(N) v avoT LY (NOILYSNIANOD ON) %68 “Xvi ALGINNH INJIAWY
— — 200 | 710 | (ww) Avid LivHS | (35¥0 HOLOW 3HL GNV STI0D SOLON 3HL NI3NL3E) NIW | ¥03 OVADDS HIONIALS ORLOTTI
mavd | WY (4.992] .0£1 8 SSY10 NOLYINSNI
NOLLYINNOD LS Xoul g7 (N) 43 30404-Tviaws| (AUCINNH ONY 34NIVE3dNIL TWWHON H3ONN) WYOW 001 JONVISISIY NOLYINSHI
ol (wuw) o FINVISIO N/ 006 ~07- JNIvIIdNIL INIENY
N 35vHd XOW Q=04 (N) o4 30404 TWixv 008XV IS F¥NIVYINAL
[ec'0] §l0 [a1] (bx) 1HOIIM
T TS ghw D [8190°0] L01*18L [u-ai] (w—by) viLyIN HOL0Y
e e aﬁge 0019/0v8¢ (Wdd) Qv01 ON/Q3LVy 033dS
o Ealml | ™ 59 (W) 031vy ¥3wod
pr | i . W 6920°0 (¥/WN) INVISNOD 3nDHOL
e = ’ [sre/sit] eeo/clo [u-q] (wN) Wad/aaivy InbuoL
W% ool x T n 1 70d i 14 W %0TF L20 ZH)L® (Hw) 3SYHd OL ISvHd/IONYLONONI
e P T S T N33 T N %0LF 190 2078 (Swy0) ISYHd 01 ISYHd/FONVLSISTY
; T4V NI G2LNAON ¢B /9T¢ (v) Wad/aalvy INIWEND
M |HOLN NS ~Ni¥dS 40104 o> (v) INIH4ND QY01 ON
[O0A) 031¥4 3VLI0A
il 1004 MIXVHIVIOYY TIBISSINYd i Aumﬂw_._ e L
0L ot 1 P— WIS NOILJINNOD NOIYDLI03dS
2 [-%
e \w Bl
s OLOL-0-9-072E1 JIN e ekl e
NOILO3INNOD TTvH OMD0LS Hopsuuod Jii (@) m I ¥e
Y o / V2 OMV 0EFF TN = 25l
pey | DOABLTEEEHA | 8 NId "N 5 m M 73
BIUAL £1leH LNId N F_Ea_m = A ."_ LS =
L e
enlg L lEH NI [S O B N B | _ + "
9819 ZIEH SNId O s oS uo ? | M o {8 |® o,
u apIs JBYS WOl MO _ mw B O | N || | SSS— - . / i
yoelg ano PNId i m Y] mo £ = \ _u L
MO A M ENId _ = _IWI_ - = W..u-
umosg A ZNId _ N L 1
Aeusy n LNId = ey
[5052 :
w__oo EE.a.m.Ewww cu_ﬂm‘ 00018 Yoz 090z ‘uwg desp gy Y Eﬁ
A, L jui o
MBIA Jeay MBIA BPIS Buiunow pue MmalA Juold

Nanotec DF45 Motor Datasheet

A.

B. Cube Balancing Code (Python)
import logging

import sys

import time

import math

import PID
from Adafruit_BN0®55 import BN0B55

import Adafruit_GPIO.I2C as I2C
import Adafruit_BBIO.PWM as PWM

#Reset the PWM signal for the motor driver.
#and start it at 50% (@ Torque).
PWM.stop("P9_14")

PWM.cleanup()

PWM.start("P9_14", 50, 20000, 0)

initCal = @

#Initialize a PID loop object.

P =25.0
I=10.0
D=5.0

myPID = PID.PID(P, I, D)
myPID.setSampleTime(0.0) #Sample the system as fast as possible.
myPID.SetPoint = 0.0 #Desired angle of the cube.

myPID.output = 50 #50% PWM.

out = 50

#Set max/min duty ratios of the motors.
maxPWM = 70
minPWM = 30

Create and configure the BNO sensor connection.

bno = BN0B55.BN0B55(rst="'P9_12', address=0x28, bus=2)
#bno2 = BN0B®55.BN0B55(rst="P9_12', address=0x29, bus=2)
bno3 = BN0B855.BN0B55(rst='P9_12"', address=0x28, bus=1)

Enable verbose debug logging if -v is passed as a parameter.
if len(sys.argv) == 2 and sys.argv[1].lower() == '-v':
logging.basicConfig(level=1ogging.DEBUG)

Initialize the BN0B55 and stop if something went wrong.
if not bno.begin():
raise RuntimeError('Failed to initialize BN0@55! Is the sensor connected?')

Print system status and self test result.

status, self_test, error = bno.get_system_status()

print('System status: {@}'.format(status))

print('Self test result (@xOF is normal): @x{0:02X}'.format(self_test))

Print out an error if system status is in error mode.
if status == 0x01:
print('System error: {@}'.format(error))
print('See datasheet section 4.3.59 for the meaning.')

Print BNO®55 software revision and other diagnostic data.
sw, bl, accel, mag, gyro = bno.get_revision()
print('Software version: {8} .format(sw))

print('Bootloader version: {0}'.format(bl))
print('Accelerometer ID: 0x{0:02X}"' .format(accel))
print('Magnetometer ID: 0x{0:02X}"' .format(mag))
print('Gyroscope ID: 0x{0:02X}\n" .format(gyro))

print('Reading BN0@55 data, press Ctrl-C to quit...")

#Start reading the sensors and controlling the motors.
runTime = time.clock()
while runTime < 10: #Run for 10.0 seconds

Read the Euler angles for heading, roll, pitch (all in degrees).
heading, roll, pitch = bno.read_euler()

Read the calibration status, @=uncalibrated and 3=fully calibrated.
#sys, gyro, accel, mag = bno.get_calibration_status()

if initCal < 5:
myPID.SetPoint = pitch
initCal += 1

#Compute the new PID output based on the cube angle.

10

myPID.update(pitch)

#Set the motor duty ratio from 50%.
out = 50 - myPID.output

#Limit the motor duty ratio if above or below the max/min.
if out > maxPWM:

out = maxPWM
if out < minPWM:

out = minPWM

#Send the duty motor duty ratio to the driver.
PWM.set_duty_cycle("P9_14", out)
runTime = time.clock()

#Set motor speed to @ after running for a time
PWM.set_duty_cycle("P9_14", 50)

11

Generic PID Control Class (Python) - By: IVMECH MEKATRONIK

This file is part of IVvPID.
Copyright (C) 2015 Ivmech Mechatronics Ltd. <bilgi@ivmech.com>

IvPID is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

IvPID is distributed in the hope that it will be useful

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

###############O

title :PID.py

description :python pid controller
author :Caner Durmusoglu

date 120151218

version 0.1

notes :

python_version :2.7

#

Ivmech PID Controller is simple implementation of a Proportional-Integral-Derivative (PID) Controller in the Python
Programming Language.
More information about PID Controller: http://en.wikipedia.org/wiki/PID_controller

import time

class PID:
"""PID Controller

def __init__(self, P=0.2, I=0.0, D=0.0):

self.Kp = P
self.Ki = I
self.Kd = D

self.sample_time = 0.00
self.current_time = time.time()
self.last_time = self.current_time

self.clear()
def clear(self):

"""Clears PID computations and coefficients
self.SetPoint = 0.0

self.PTerm = @
self.ITerm = @
2]
o

o0

self.DTerm = @.
self.last_error = 0.0

Windup Guard
self.int_error = 0.0
self.windup_guard = 20.0

self.output = 0.0

def update(self, feedback_value):
"""Calculates PID value for given reference feedback

. math::
u(t) = K_p e(t) + K_i \int_{@}*{t} e(t)dt + K_d {de}/{dt}

. figure:: images/pid_1.png
ralign: center

Test PID with Kp=1.2, Ki=1, Kd=0.001 (test_pid.py)

error = self.SetPoint - feedback_value

self.current_time = time.time()
delta_time = self.current_time - self.last_time
delta_error = error - self.last_error

if (delta_time >= self.sample_time):
self.PTerm = self.Kp * error

def

def

def

def

def

self.ITerm += error * delta_time

if (self.ITerm < -self.windup_guard):
self.ITerm = -self.windup_guard

elif (self.ITerm > self.windup_guard):
self.ITerm = self.windup_guard

self.DTerm = 0.0
if delta_time > 0:
self.DTerm = delta_error / delta_time

Remember last time and last error for next calculation
self.last_time = self.current_time
self.last_error = error

self.output = self.PTerm + (self.Ki x self.ITerm) + (self.Kd *

setKp(self, proportional_gain):
"""Determines how aggressively the PID reacts to the current error
self.Kp = proportional_gain

setKi(self, integral_gain):
"""Determines how aggressively the PID reacts to the current error
self.Ki = integral_gain

setKd(self, derivative_gain):
"""Determines how aggressively the PID reacts to the current error
self.Kd = derivative_gain

setWindup(self, windup):
refers to the situation in a PID feedback controller where
a large change in setpoint occurs (say a positive change)
and the integral terms accumulates a significant error
during the rise (windup), thus overshooting and continuing
to increase as this accumulated error is unwound

(offset by errors in the other direction).

The specific problem is the excess overshooting.

self.windup_guard = windup

setSampleTime(self, sample_time):
"""PID that should be updated at a regular interval.
Based on a pre-determined sampe time, the PID decides if it should

self.sample_time = sample_time

13

self.DTerm)

with setting Proportional Gain

with setting Integral Gain

with setting Derivative Gain

Integral windup, also known as integrator windup or reset windup,

compute or return immediately.

D. Atmega Motor Driver Code (C/Arduino)

//SPEED

float RPM = 0.0;

float stepCount = 0.0;
int prevTime = 0;

// MUX BIT OUTPUTS

const int muxA® = 5; //PD5
const int muxA1 = 6; //PD6
const int muxAe = 11; //PB3
const int muxB@ = 7; //PD7

const int muxB1 = 8; //PB@
const int muxBe = 12; //PB4
const int muxC@ = 9; //PB1
const int muxC1 = 10; //PB2
const int muxCe = 13; //PB5

// HALL SENSOR INPUTS

const int HallA = 2; //PD2
const int HallB = 3; //PD3
const int HallC = 4; //PD4

// HALL EFFECT READING VARS
char my_varA = 0;

char my_varB = 0;

char my_varC = 0;

int A;

int B;

int C;

// MOTOR STEP LOCATION
long curStep = 0;

long prevStep = 0;
long prevStep2 = 0;

void setup() {
//Initialize Hall effect input pins
pinMode(HallA, INPUT);
pinMode(HallB, INPUT);
pinMode(HallC, INPUT);

//Initialize outputs/inputs
DDRD = 0b111060000;
DDRB = 8b11111111;

//Detect the initial rotor step location
A = digitalRead(HallA);

B = digitalRead(HallB);

C = digitalRead(HallC);

if (A== 18& B == 8 8& C == 8) {

curStep = 1;
} else if (A == 1 && B == 1 && C == 0) {
curStep = 2;
} else if (A == 0 & B == 1 && C == 0) {
curStep = 3;
} else if (A == 0 && B == 1 && C == 1) {
curStep = 4;
} else if (A == 0 & B == 0 && C == 1) {
curStep = 5;
} else {
curStep = 6;
}
//Initialize all MOSFETs LOW!
turnOff();
}
void loop() {
runMotor();
}
void runMotor() {
// READ & GET THE HALL SENSOR STATES
A = (PIND & (1 << PD2));
B = (PIND & (1 << PD3));
C = (PIND & (1 << PD4));

prevStep = curStep;

if (A== 4 8& B == 0 && C == 0) {

PORTD = ©b00000000;

PORTB = 0b00010011;

curStep = 1;

else if (A == 4 && B == 8 & C == 0) {

~

14

}

~

~

~

~

}

PORTD =
PORTB =
curStep
else if
PORTD =
PORTB =
curStep
else if
PORTD =
PORTB =
curStep
else if
PORTD =
PORTB =
curStep
else if
PORTD =
PORTB =
curStep

0b01000000 ;

0b000e1010;

=2;

(A==028& B ==828&C == 8) {
0b0@100000 ;

0b00100100 ;

=3;

(A==108&B == 8 8& C == 16) {
0b0@100000 ;

0b00010001;

= 4;

(A==1028& B ==08& C == 16) {
0b11000000 ;

0b0e001000 ;

= 5;

(A==148&%B ==08&C == 16) {
0b10000000 ;

0b00100100 ;

=6;

void turnOff() {

}

PORTD

0b01001110;

PORTB = 0b080111101;

void getRpm() {

// CALCULATE RPM

if (curStep != prevStep) {
stepCount++;

}

prevStep = curStep;

if (millis() - prevTime >= 258) {
RPM = (stepCount / 48.0) * 240.0;
stepCount = 0.0;

prevTime = millis();

}

15

16

DF45 Motor Driver Schematic

E.

D\rm
NLD
pE
f=h
z'n ;] A ;N._.? 0712
.|u|n £n s Z1d
C)
PU8SAEASHT T as: B
K] +—
A9z ang g
[oHg) N = s
= o 98@balH
—] zo 9 Wiy — B o 0
Bu8s ST Tzas il R ~L | 8| FEe B i =
% i e gy H3[ga] [ED—r| o0 m <) -
M- . s sl 3]
503y weonzess BEf) - o oz
E w| ¥g | lnepat Ll - -
& - = [o om
M”m -y =2 ..:m.n i G 2 i s TR fish ik
S5TTZa85: = & 4 G " ?
ed _\W s 1+ TR 01— 0@ 850 5
i 1 IL
e ezl 5 i Ca I R
0 T ML e & ¥ [0 0w 1w —<TH] -
i o % o B L
za 9 A OHE A
o mwm.ﬂmaw.m EE m e L = S il
) 5 = o] | 8| e e 2=5
z7] ®
weonzecatigh) — ~H g g 9
& %0 8 [__,..hwv 0 Nﬁ NW NW
5 &0 - ez i G
pu8s as: = ==
pevTTzos T it
e = = (o -
(] n ZTLEM E5TIHpL
= NY I_Iu.: g s W
TT w [T+ j AZ OND |
,|1_ ry NeL e Ll Y] |
- g <o) < T uz e H—
&6 Hy 5 £t £1N10d- 1531 | Ziz Ut
2 o <t £ £ 2zt
8 ST TZ05: sl s -
= NS o 3o 3T | mm_
cmazmmmmﬂ.mﬂw%u T o € N0d-153L
of ¥ Oy
HOOPBITLIHU KL = B e
Z —— <TrE]
‘ = = & e
N ELNIOd- 1§53 o o
a L 1o (R E T
Z8d 3]
o B I] ﬁH_
mmnu_ = S5 57| 20 T £ INI0G- 1530
209
sa [L - _— BSTHEL o
S04 | 238 ONS, <] <ng] £
28d ﬂ “m dHd Gz} 176> =] 42 N9
58d - | Bz AT <]
Tt X == % o
o0 —Ag] I—N_ <ang] e = ez oz
Z7ON9 5] i T Bs EIT e,
+0d — =] 2 18 SH
e EEl B ™0 £ IMod-153L
HNY-8ZEYO3ULY
£n

F.

P

Power Distribution Schematic

24V

VOERRICED F voomminzs
W |

aiy
——— <G
yne—ETE]

<EET]

1 "‘-?\"F

wiz | st
it R

TR

buck-boost converter

17

18

hY|
w1
2 e
o O
=oom
-0
51
LM2672MX-12MNOPB L1
12 BOOST S ?- S {6 g L e Qe |
55 vIN = 68uH 3 [>
ChEE = srne aND (2 S = g o
FB OM-OFF 2 o i 7O
0.022UF =R — |
—1© B &
GND GND GHD
12V buck converter
LM26775D-5.0/NOPB
LE 1 15 L2
= —— ho2 15 1E
[vinmer = e 2 | yINZ s (14 i S|
o e aian o % e 220F wl e
= 047 047 AN gl BT % 3= S|
— B 1 syNe Nea 10 o o o O |- (=i
: 7 i) c\':{—:) (\F{—D
= N ow»%r\g (e 18 P % [{e} 8 w L(O')
s o a
X a5 | @) o
[
g % GND GHD
g 8
T4

5V buck converter

%]
[
N
«
(3}
L)

Power Distribution PCB

G. Beaglebone Cape

19

B1Pg
oedp P® oo ’;'gi—_‘_
GPIO_38 spio_3n 2
HRb GPIO_34 P35 [ERD s
GPIO_BE GPIO 67 [0
GPIO_RS GRIO B [550
GRIO_45 GRIO_44 |2
GPIO_23 GPIO_ 26 :—S};
[raisis = GPID_47 GPID46 [oye R |
[P75 GPIO_27 GPIOES [5oo,
[PwM 2iz 27 GPIO_22 GPIOE3 |50,
GRIO_B2 GRIO 37 [5550
GRIO_36 GRIC 33 [5oo0
GPIO_32 S
GPIO_86 cpiss [E22
[Pa29is.2? 2] GRIO_87 GRI0_89 [ooos P3.30/5.27 |
PB.31/5.72 2 GRIO_10 GRIO_11 2220
i GRIO_3 GRIO 81 (2o
GPIO_2 GPIO 80 |50
GPIO_78 apIo7e [52
GRIO_76 GRIO_77 [52
GRIO_74 GRIO 75 [5200
GRIO_72 GRIO 73 [Es
GPIO_70 pg GPIO_71 [
PUALLES
B1RS
pai[on P8 o |RA2
P9.3 P9.4
=1 YDD_3¥3 YOD_W3 |5
GHMD _ pus = s Pag GND
[vz CUTNL TCUTZ T EUINE T EuThe Fag| 1005 YOO IFge sviz2? |
L b - D] iSTasy srssv [0
B = = PWR_BUT SYS_RESETN |=
AeuE | AU | TR Ealll Gro_an apio_en (E312 Foizs |
3t PO 1305 %7 Fatal criom crio4n [ERd P2 07
GND pg.17| GPIO_48 GPIO_51 Ips 18
[12c1_scuzer EaTs| GPIOA GRS [5asn 12C1_sDaiz?e |
[12cz scuzer Fa] l2%2scL 1262_304 [Eoss 12C2 sDAI2?? |
pa3| GPIOE GPo_2 [t
[ADDR_1/227 Foos| GPIO_4a GRIOS (oot
INT 1/2.92 SaET GRIC_117 GPIO 14 Ipa 25
[ADDR_zrz 7% = GPIO_125 GPIO_123 fE25s INT 2277]
[ADDR 31277 = GPIO_121 GPI0_122 [INT 3227 |
[P _1iz 77 = GPIO_120 YOD_ADG [z 2 o
= AlNd GND&_ADC
[N s [E2.90 R k5
ol wine aina (B2 AIN_24 2%
pgﬂ' AIND Al fERAS AN 1427
po | GRIo_20 =k
Pa4s DGND CGHND | a6
DGND pg CGMD
fe SPARKF UN_BEABLE _BONE_BLACK_CAPE —im
Connections to Beaglebone headers.
1201
FPA-CONG
1
e 2%
[33vi32 Lm 1 12 [HA 1577 A s
Tios 12C1_sCLi 77 i @ [Hc s -
L2 1 1601 _S0AN 77 1 4 RS
ADDR_TH 77, b [Pwh_in %
INT_171.77 & i
[a]
122
%l—' Pé-CONG GND PA'C%;'E
1
o) °?
1 [33w3 15 1 12 [Ha 25 AT s
ELED 1 EC7_SCLA 7% - [Ac a5 4
‘ Taewr ¢ 12C2_SDAN 77 45 [e zasr
ADDR_2H.77, I [ewi_zn 72
e INT_2n 77 - s 4
12053 mim
FAeCONS PA-COMG
U3,
1
[avise 10 1 | R
Ce E o
> [e 7 s
Toour EC_S0LN 77 3= 2 |ETEEER 4
< 12C2_SDAN 77 1 [SEN 3477
ADDR_3H. 77, 5 [30 77
INT_31 77 - & H
OND PACONS
155

Connectors on cape to attach other components in system to BeagleBone.

I SVIZ. 77 >

T ovin sw
A s
3 1 en e 2

{3.3V15.27 |

20

3.3V converter to power IMU and 5V to 3.3V logic.

Rl
Ay
62k
H3
Ay
62k
RE
Ay
62k

L Al 1.7 4 Al 2177

4 Al 31.27
b A5 b A8 b A5
P atwi]] o=
ggg mgé ﬁéé
o " iy
GND GND GND
5V to 1.8V voltage divider for Analog to

Digital Converter with max 1.8V.

GEr]
Y |
Gz]

P
=%
75
PRSI " R G2y FaTT .
25 225 28
— T = -
5 R %D TR X g
[Fe30 He 172] [Psieid B 2/2 I [Poiz HE 3
= :
o 2 - =) B
&) 2 2 A 2
& 3 o i)
=x < ey gy
22¥ e 928 =5
S 225 228 &28
=T hC 2z | [peawie rEA hc 2z | [parn (o 1
£ 4

5V to 3.3V digital logic converter.

21

